
GPU DRIVERS UNDER FIRE

NEW YORK PASSES 72-
HOUR CYBERATTACK LAW

Cybersecurity 2025

November 2025/Volume 01

ANALYZING HEISENBUGS

FRONT /> CODE
 November 2025

C Y B E R S E C U R I T Y

SYSTEM SECURITY EVOLUTION & ADVANCED EXPLOIT

AI SUPPLY CHAIN SECURITY

QUANTUM-RESISTANT
CRYPTOGRAPHY

MEMORY-SAFE
PROGRAMMING

GPU drivers are back in the spotlight after recent security

disclosures from Qualcomm and NVIDIA. Both companies

were forced to fix flaws that allowed attackers to escalate

privileges, run code, and bypass protections.

These cases highlight how vulnerable GPU software has

become, especially when it operates close to the kernel.

Qualcomm’s Zero-Day Issues in Adreno Drivers

In June 2025, Qualcomm patched three zero-day flaws in its

Adreno GPU drivers. The bugs affected millions of Android

devices running Snapdragon chips. Google’s Android Threat

Analysis Group discovered the flaws and reported them to

Qualcomm.

Two of the bugs, CVE-2025-21479 and CVE-2025-2148, scored

8.6 out of 10 on the CVSS scale. These allowed memory

corruption through specially crafted GPU commands.

The third bug, CVE-2025-27038, was rated 7.5. It involved a

use-after-free condition in the rendering pipeline. All three

issues let attackers move from user apps to kernel-level

execution.

The flaws were already under attack before the fixes were

made public. Google did not disclose who was behind the

exploitation, but security analysts believe spyware vendors or

state actors were likely involved.

Qualcomm delivered the patches to device manufacturers in

May. Users still rely on OEMs to package and release updates,

which delays protection.

This is not the first time Adreno drivers have caused

problems. Past research from Google’s Android Red Team

showed that GPU code often lacks permission checks. That

gives any app a path to poke at privileged driver functions,

making kernel exploits more likely.

1 GPU Drivers Under Fire:
Lessons from the Qualcomm and NVIDIA Flaw Disclosures

1

NVIDIA’s Pile of Vulnerabilities

NVIDIA has published two major security updates this year.

In April, it fixed CVE-2025-23244. This bug affected Linux

systems and let attackers gain higher privileges from a non-

root position. The vulnerability allowed remote code

execution, denial of service, and data tampering.

The July update was broader. It fixed seven vulnerabilities

across Windows and Linux. These included installer privilege

flaws, memory errors, use-after-free issues, and information

leaks.

CVE-2025-23276 and CVE-2025-23281 were among the most

serious, both scoring above 7.5. Exploiting these flaws could

result in local privilege escalation or data corruption.

NVIDIA issued patches for multiple driver branches. These

included R535.247.01, R550.163.01, R570.133.07, and

R575.51.02. Enterprise users had to apply the right update for

their version. NVIDIA did not confirm active exploitation, but

users were warned to update immediately.

Why GPU Drivers Keep Causing Trouble

These flaws all share one theme: GPU drivers carry too much

power. They run close to the kernel. They manage memory.

They accept input from apps without deep validation. They

were designed for speed and throughput, not for safety.

As graphics hardware has evolved, the role of the GPU driver

has grown. It now supports AI, gaming, encryption, and

more. A GPU driver can expose a wide surface to attackers

while operating with near-kernel privileges.

On Android, Google has flagged GPU drivers as a risk. Apps

can access them freely, even when they contain bugs. An

untrusted app can send malformed GPU commands and

exploit memory handling issues to gain control. That puts

billions of devices at risk.

Academic research has shown that GPUs can leak memory

between users. One study found that uninitialized register

access could let users spy on others’ workloads. The problem

extends beyond phones—it affects desktops, servers, and

cloud environments.

https://nvd.nist.gov/vuln/detail/CVE-2025-21479
https://nvd.nist.gov/vuln/detail/CVE-2025-2148
https://nvd.nist.gov/vuln/detail/CVE-2025-27038
https://nvd.nist.gov/vuln/detail/cve-2025-23244
https://vulners.com/cve/CVE-2025-23276
https://feedly.com/cve/CVE-2025-23281

Slow Patches and Poor Visibility

One big problem is the time it takes to deliver fixes.

Qualcomm made the patches available in May, but most

users did not get them until June or later. Android users

depend on phone manufacturers to push updates. Many

older phones may never get a fix.

NVIDIA controls its own update process, but still requires

users to install the correct driver manually or through a

managed system. Many users skip updates if performance is

stable. That leaves them exposed.

Another issue is visibility. Most users don’t know what a GPU

driver patch really fixes. Manufacturers rarely explain that a

graphics update closes a privilege escalation path. Unless a

vulnerability makes the news, the threat may go unnoticed.

What Needs to Change

GPU drivers must be audited more thoroughly. Vendors

should apply modern fuzzing and static analysis techniques

to driver code. They should isolate GPU execution contexts

and enforce strict boundaries around memory operations.

Security researchers should keep probing GPU interfaces.

Many of the flaws this year were found by independent

teams, not by the vendors themselves.

Device makers must commit to faster patch delivery. If an

OEM cannot patch GPU drivers quickly, it should not ship

devices with exposed components. Google’s push for

modular driver updates through Project Treble and Android’s

Mainline modules is one possible fix, but adoption is still

limited.

Users need to take updates seriously. On Windows and Linux,

apply new NVIDIA drivers as soon as they’re released. On

Android, check for updates often and avoid devices that

don’t receive security patches.

2

To Conclude

GPU drivers have grown from performance tools into

complex systems that run at the heart of computing. The

recent flaws in Qualcomm and NVIDIA drivers show how

dangerous poor GPU security can be. These aren’t abstract

bugs. They’ve been exploited in real attacks.

Vendors must treat GPU drivers like any other kernel

component. That means full testing, rapid patches, and clear

communication. It also means stripping out legacy

assumptions that graphics code is low-risk.

Security starts at the driver level. These disclosures make that

clear.

Local governments in New York must now report

cyberattacks within 72 hours. If they pay ransom, they must

report that within 24 hours.

A detailed explanation must follow within 30 days. The new

law also requires public employees to complete annual

cybersecurity training.

Full Backing from Lawmakers
Senate Bill S.7672A/A.6769A passed both chambers without

any opposition. The law builds on Governor Kathy Hochul’s

earlier cybersecurity plan. In 2022, she appointed the state’s

first cyber officer. Since then, the administration has pushed

to tighten rules for public systems.

Clear Deadlines for Reporting
Under the new rule, any county, city, or agency hit by a

cyberattack must alert the New York State Division of

Homeland Security and Emergency Services within three

days.

If the agency pays ransom, it must report that within one

day. It then has 30 days to explain the decision. That report

must include how much was paid and whether legal review

was done.

Goal Is Faster Response and Less Damage
State officials say these deadlines help contain threats. Early

reporting allows the state to track attacks, warn others, and

send technical help if needed.

The law also closes a gap. Financial companies already follow

similar rules under New York’s Department of Financial

Services. That regulation has required 72-hour incident

reporting since 2017. New York’s new law for public agencies

brings the same urgency to schools, towns, and counties.

Governor and Cyber Officials Weigh In
Governor Hochul said the law protects basic services across

the state. She called cybersecurity a core duty of public

agencies.

Colin Ahern, New York’s chief cyber officer, said attackers

now target small towns and under-resourced systems. He

said the new rule brings structure to a problem that has long

been patchy across local governments.

2 New York Passes 72-Hour Cyberattack Reporting Law

3

Web Portal to Report Attacks
To help with compliance, the state launched a web portal.

Local agencies can file reports and request help through a

single platform. This lets state teams track incidents and

coordinate faster.

Jackie Bray, head of Homeland Security and Emergency

Services, said the system is built for speed. She said delays

cost time and increase damage.

Public Training Now Required
The law also introduces yearly cybersecurity training for all

public employees. The state will set minimum security rules

that every public agency must follow.

The goal is to make basic protection routine. Local

governments must now update their internal policies and

schedule training sessions.

Ransom Reporting in Practice
If a city discovers a ransomware attack on August 10, it must

report the breach by August 13. If it pays a ransom on August

11, it must file that report by August 12. By September 10, the

city must submit a full written explanation of its decision.

These deadlines are firm. Reports must go through the

state’s new portal.

Some Pushback, but Support Holds
Some smaller towns have raised concerns. They say the

timelines may be hard to meet with limited staff. State

officials say the portal and training will help. They also say

centralized reports will show broader patterns, which helps

prevent future attacks.

Assembly member Billy Jones, one of the sponsors, said the

law gives local leaders a rulebook. He said many towns didn’t

know what to do after being hit. Now, they do.

Law Is Now Active
The law took effect immediately. All public agencies in the

state must follow it. Those that fail to meet the reporting

deadlines may face penalties.

https://www.nysenate.gov/legislation/bills/2025/S7672/amendment/A
https://www.nysenate.gov/legislation/bills/2025/A6769/amendment/A
https://www.governor.ny.gov/news/governor-hochul-announces-legislation-now-effect-strengthen-cybersecurity-across-new-york

A First for Municipal Systems
New York is among the first states to require such reporting

from local governments. Most state rules have focused on

private companies and critical infrastructure. This law brings

schools, town halls, and public agencies into the same

system.

The focus is clear: act fast, report early, limit damage. Cyber

threats grow every day. This law sets a simple rule, no more

silence after an attack

4

Heisenbugs are hard to detect bugs that can be omitted

when observed in optimized and concurrent systems

commonly used nowadays. Kernels are particularly difficult

to debug with these bugs because the most traditional

debugging approaches cannot be used due to timing,

concurrency, and compiler optimizations.

Often surfacing only at scale in production, Heisenbugs

require more than standard debugging. This article explores

how combining structured techniques with hardware-

assisted tools can help uncover and resolve these tricky

system-level issues.

Understanding Heisenbugs
The heisenbug is usually a result of such complications as

uninitialized memory, compiler optimization reordering, lack

of determinism of memory layout, or race conditions.

Bugs can sometimes vanish during debug mode but remain

in release, since debug builds, unlike release, zero out

memory or serialize timing, as a means of saving

programmer time to debug the program.

With kernel-mode, there is more to lose: tiny disturbances

like enabling JTAG or tracepoints can change scheduling,

serializers, or register spills, and jeopardize the bug without

anyone realizing it.

3 Analyzing Heisenbugs with Hardware-Assisted Kernel Debugging

5

Traditional Reproduction Techniques:
Systematic Scheduling
Before hardware tools became mainstream, researchers

used software-based approaches like CHESS (by Microsoft

Research) to systematically explore thread interleavings.

CHESS wraps .NET or Win32 programs, monitors their

execution, and records the "happens-before" graph of thread

interactions. This graph is then used to deterministically

replay thread schedules and expose concurrency issues.

The architecture of CHESS involves program instrumentation

and a scheduler that records and replays thread behaviors.

As shown, it integrates with the runtime through wrappers

and feeds execution traces to a search module that

systematically explores all possible thread schedules.

The CHESS model enables reliable reproduction of hard-to-

catch race conditions, even in programs with billions of

potential interleavings.

Scaling Diversified Execution with Hardware
Tracing
Beanstalk is a framework that improves Heisenbug detection

by running the same kernel code across different

configurations, varying instrumentation levels, and hardware

setups.

This technique, called diversified execution, increases the

chances of revealing concurrency-related bugs. Another

prominent aspect of Beanstalk is a metric called the heisen

factor, which measures the difficulty of reproducing a given

bug to determine which bugs to fix first.

SOURCE

https://stackoverflow.com/questions/1574086/how-to-hunt-a-heisenbug
https://www.researchgate.net/publication/390637756_Unveiling_Heisenbugs_with_Diversified_Execution

To assist it, hardware-aided debugger tools such as WinDbg

or HyperDbg are employed in a host-guest pairing, where

the debugger is on the host, and accesses a virtualized

kernel through named pipes or a virtual serial port. This

method does not disturb kernel timing or behavior, making

the trace capture accurate.

Integrated with hardware-level tracing, diversified execution

offers a highly scalable way to detect and follow up on the

hard-to-detect kernel bugs missed by other debugging tools.

Case Study and Empirical Data
A tool called H3, introduced at the USENIX ATC conference,

shows how we can reproduce heisenbugs that happen in

real-world kernel environments. It works by using special

CPU features to capture and replay the exact sequence of

events that caused the bug.

This lets developers recreate and study bugs that were

previously impossible to reproduce, all on normal hardware.

Even though this method is a bit older, it showed that it’s

possible to debug tricky kernel bugs without changing the

system in ways that might hide them.

In another example, researchers studied silent data

corruptions, errors caused by faulty hardware that behave

like heisenbugs. Over 18 months, they looked at data from

hundreds of thousands of computers and found hidden

issues in CPUs.

They applied hardware-based debugging to trace backward

the specific instructions that failed, and what caused the

troubles, of all the components of the system, including

hardware and up to the software.

Such examples point out that hardware-level debugging

does not merely represent an option to detect software

flaws, but it also has the potential to uncover hidden

hardware flaws that may be circumvented by other

conventional debugging tools.

3 Analyzing Heisenbugs with Hardware-Assisted Kernel Debugging

6

Best Practices and Practical Tips
Don't fill up the system by logging or debugging code:

There is a fine line between sufficient debugging

information and too much. Maintain lightweight tools for

tracking.

Rely on hardware features for clean tracking: Use

hardware tracing and virtualization-based tools to see

exactly what’s happening inside the kernel, without

changing how it behaves.

Quantify how difficult the bug is: With a scale such as the

heisen factor on the Beanstalk platform, you can

determine how difficult the bug is to reproduce. This

assists in prioritizing bug fixes.

Automate the reproduction of the bug: Do repeatable

tests that make the bug emerge, so that you can see

whether the bug that existed before was actually fixed

when you get the same bug conditions.

Conclusion
Heisenbugs are among the toughest kernel issues, often

hiding in timing, optimization, and concurrency, and

disappearing under normal debugging. But with hardware-

assisted tracing, tools like HyperDbg and Beanstalk, and

smarter debugging methods, these bugs can now be reliably

found and fixed.

Kernel debugging is shifting from guesswork to a precise,

repeatable process. Developers should explore tools like

HyperDbg, CHESS, Snowboard, and Beanstalk to better

understand and resolve these elusive system-level bugs.

https://www.usenix.org/system/files/conference/atc17/atc17-huang.pdf
https://arxiv.org/abs/2102.11245

Artificial Intelligence (AI) has become central to digital

transformation, but as reliance on pre-trained models and

open datasets grows, so do the security risks hiding inside

the AI supply chain. Recent research and real-world

incidents show that attackers are exploiting these weak links

— tampering with data, frameworks, or models to

compromise AI integrity and trustworthiness.

A Growing Problem Hidden in Plain Sight
Modern AI systems are rarely built from scratch. Developers

typically use pre-trained models from open repositories such

as Hugging Face or TensorFlow Hub. These models are then

fine-tuned using public or proprietary datasets before being

deployed into production systems.

 This interdependence of datasets, libraries, and cloud

services has created an AI supply chain, one that mirrors —

and multiplies — the software supply chain problems already

seen with attacks like SolarWinds or Log4j.

In early 2025, multiple cybersecurity labs reported that

malicious models disguised as open-source AI tools were

circulating online. Once integrated, these models quietly

transmitted data to remote servers. The infections were

discovered only after months of undetected operation in

enterprise test environments.

Real-World Attacks on AI Pipelines
In one widely discussed case, researchers found that a

machine learning library in a public repository had been

replaced with a poisoned version. The malicious file shared

the same name and version number but contained hidden

code to capture environment variables, including API tokens.

Another case involved data poisoning in facial recognition

training sets. Attackers subtly altered a small percentage of

labeled images, leading the resulting model to misidentify

individuals of certain demographics. Because the

manipulated samples were statistically insignificant,

traditional validation didn’t detect the corruption.

A 2024 report from MIT’s AI Policy Lab warned that model

supply chain risks could lead to “invisible influence” attacks,

where poisoned models are used to skew financial, political,

or hiring algorithms without immediate detection.

4 AI Supply Chain Security — The Hidden Risk Behind Machine Learning Models

7

Why the AI Supply Chain Is Vulnerable
AI’s architecture inherently encourages openness — open

datasets, shared models, collaborative code. While this

accelerates innovation, it reduces visibility into provenance

and trust.

 Unlike compiled software, AI models are binary blobs that

embed millions or billions of parameters. There’s no

straightforward way to verify their internal integrity.

Moreover, existing security tools focus on application-level

vulnerabilities, not on anomalies in model weights or dataset

consistency. This makes the AI stack fertile ground for

sophisticated attackers who prefer stealth over brute force.

Efforts Toward a Secure AI Pipeline
Security researchers and standard bodies are now pushing

for AI provenance frameworks — systems that track every

stage of model creation, from data ingestion to deployment.

 NIST and ISO have begun exploring metadata standards for

“Model Bills of Materials” (MBOMs), similar to Software Bills of

Materials (SBOMs). Such documents would list model

sources, training datasets, contributors, and dependencies.

Organizations like OpenAI and Google DeepMind have

already introduced cryptographic model signing to verify

authenticity. Some cloud platforms also offer “trusted

training environments,” which isolate model-building

processes from external interference.

Slow Adoption and the Road Ahead
Despite technical progress, adoption remains slow. Many

smaller companies and researchers still rely on unverified

public models to save time and resources. Awareness of

model-level threats is limited compared to traditional

software vulnerabilities.

As AI continues to integrate into critical infrastructure — from

healthcare diagnostics to autonomous vehicles — the

consequences of supply chain breaches could be

catastrophic. Experts argue that without regulation and

transparency, the next major cyberattack might not target

software — but the data and models that shape it.

To Conclude
AI’s promise depends on trust, and that trust begins at the

source. The AI supply chain — once seen as a collaboration

hub — has become a potential attack surface.

 Protecting it will require not just new tools but a cultural

shift in how AI systems are built, verified, and shared.

 As the boundaries between software and intelligence blur,

securing the supply chain means securing the future of AI

itself.

4 AI Supply Chain Security — The Hidden Risk Behind Machine Learning Models

8

Software vulnerabilities have long been the Achilles’ heel of

digital infrastructure. Despite decades of innovation, memory

safety issues still account for the majority of high-severity

security flaws. Now, a growing shift toward memory-safe

programming languages like Rust and Go promises to

reshape how we build secure systems — from the operating

system kernel to web browsers.

The Persistent Memory Problem
For nearly half a century, software engineers have relied on C

and C++ for system-level programming. These languages give

developers powerful control over memory — but also make it

easy to misuse it.

 Bugs such as buffer overflows, dangling pointers, and use-

after-free errors remain the root cause of critical exploits.

Attackers can use these flaws to gain elevated privileges,

corrupt data, or execute arbitrary code.

A 2024 Microsoft study revealed that over 70% of

vulnerabilities in Windows originate from memory safety

issues. Google echoed similar findings for Chrome and

Android. Despite countless security patches, the pattern

repeats because the underlying cause — unsafe memory

access — persists in legacy codebases.

The Rise of Memory-Safe Languages
Memory-safe languages automatically prevent these

dangerous operations. Rust, in particular, has gained traction

for its strict compile-time guarantees that eliminate whole

classes of memory errors.

 By enforcing ownership and borrowing rules, Rust ensures

that only one reference can modify a variable at a time. This

prevents data races, double frees, and null pointer

dereferences before the program even runs.

Tech giants are taking notice. Google is rewriting Android’s

media stack in Rust, leading to a significant drop in high-

severity bugs. The Linux kernel added official Rust support in

version 6.1, marking the first major shift in kernel

development in decades.

5 Memory-Safe Programming — The Future of Secure Systems

9

Industry Adoption Accelerates
Microsoft has launched internal projects to rewrite Windows

components in Rust, citing early reductions in crash

telemetry. Amazon Web Services’ lightweight virtualization

engine, Firecracker, is entirely written in Rust — balancing

performance with safety.

 Mozilla’s Servo engine pioneered safe concurrency, while

Cloudflare’s networking stack now leverages Rust to prevent

memory leaks and overflows.

Even where full migration isn’t possible, hybrid models are

emerging. Rust modules are being embedded within C/C++

codebases using interface bindings. This allows gradual

adoption without a complete rewrite, giving developers the

benefits of safety with minimal disruption.

Why It Matters for Cybersecurity
The shift to memory-safe languages represents more than a

trend — it’s a fundamental change in software engineering

philosophy. Instead of patching vulnerabilities after they’re

exploited, developers can now eliminate them at the source.

 Modern compilers and tools, such as LLVM sanitizers and

ARM’s Memory Tagging Extension (MTE), complement this

shift by detecting unsafe memory operations during testing.

However, these are stopgaps. True resilience comes from

designing software where memory corruption is impossible

by default.

Challenges and Transition Costs
The biggest barrier is legacy code. Rewriting decades of

production systems is costly and time-consuming. Moreover,

not all developers are trained in new languages like Rust. Yet

the growing number of critical exploits has made

modernization unavoidable.

Security experts argue that government-funded

infrastructure and safety-critical industries — such as

healthcare, defense, and aviation — should mandate

memory-safe development for future software.

10

To Conclude
The move toward memory-safe programming is not just a

modernization effort — it’s a turning point for cybersecurity.

 In the next decade, the phrase “written in Rust” could

become a new trust seal for software, signaling safety by

design.

 After years of reactive patching, memory-safe programming

offers something rare in security: prevention that truly lasts.

The world’s encryption systems, from online banking to

national defense, rely on mathematical problems that

classical computers can’t solve efficiently. But quantum

computing threatens to change that. Once considered

theoretical, quantum machines are advancing fast enough

to endanger today’s cryptographic foundations — leading to

what experts call the post-quantum security challenge.

Quantum Power Meets Classical Vulnerability
Traditional encryption — including RSA, Diffie-Hellman, and

Elliptic Curve Cryptography (ECC) — depends on the difficulty

of factoring large numbers or solving discrete logarithms. A

sufficiently powerful quantum computer, using Shor’s

algorithm, could solve these in hours.

 While such systems don’t yet exist at full scale, intelligence

agencies and corporations are already preparing. The fear is

that attackers could harvest encrypted data today and

decrypt it later once quantum computers mature.

The Global Push for Post-Quantum
Cryptography
In response, the U.S. National Institute of Standards and

Technology (NIST) has spent years evaluating new algorithms

designed to resist quantum attacks. In 2024, it finalized the

first generation of post-quantum cryptography (PQC)

standards.

The selected algorithms include:

CRYSTALS-Kyber for key encapsulation and exchange

CRYSTALS-Dilithium for digital signatures

Falcon for compact, high-performance signatures

SPHINCS+, a hash-based backup algorithm emphasizing

long-term resilience

These new cryptosystems rely on lattice-based and hash-

based problems that are computationally infeasible even for

quantum machines.

6 Quantum-Resistant Cryptography — Preparing for the Post-Quantum Era

11

Industry Transition Begins
Major technology companies have already started adopting

PQC in hybrid configurations. Google has implemented

hybrid TLS in Chrome, combining classical and PQC key

exchanges. Cloudflare and AWS are testing similar

deployments.

 Meanwhile, governments worldwide — including the U.S.,

Japan, and members of the EU — are mandating migration

plans for all critical systems.

However, the transition is not straightforward. Post-quantum

algorithms often have larger key sizes, require more

processing power, and must be integrated without breaking

legacy compatibility. Many IoT and embedded devices lack

the resources to handle PQC’s computational demands.

Migration Challenges
Organizations must first inventory their cryptographic assets

— identifying what encryption they use and where. Next, they

need crypto-agile systems capable of swapping algorithms

without full redesigns.

 Hardware vendors are also exploring new chips optimized

for PQC, aiming to make future encryption faster and more

energy-efficient.

One overlooked issue is data that’s already been encrypted

with classical methods. Even if PQC is adopted tomorrow,

any sensitive data stored using traditional keys may remain

vulnerable to “decrypt later” attacks in the future.

Preparing for a Quantum Future
Experts advise organizations to begin transition planning

immediately. The National Security Memorandum 10 (NSM-

10) issued by the U.S. government requires federal agencies

to begin PQC migration by 2027. Industry leaders suggest

private enterprises follow suit to maintain interoperability

and trust.

Cybersecurity researchers believe that the “quantum threat

timeline” — once thought to be 30 years away — could shrink

dramatically as companies like IBM, Google, and D-Wave

achieve exponential growth in qubit performance.

6 Quantum-Resistant Cryptography — Preparing for the Post-Quantum Era

12

To Conclude
Quantum computing represents both opportunity and

existential risk. If the cryptographic world waits until

quantum computers are ready, it will be too late to secure

what’s already encrypted.

 The adoption of quantum-resistant algorithms must begin

now, ensuring that today’s secrets remain secure tomorrow.

As one security researcher aptly put it: “Post-quantum

cryptography isn’t about the future of encryption — it’s about

preserving the past.”

