CYBER SECUR

FRONT /> CODE

v STEM SECURITY EVOLUTION & ADYAMCED EAFLOIT
November 2025

GPU DRIVERS UNDER FIRE Al SUPPLY CHAIN SECURITY
NEW YORK PASSES 72- MEMORY-SAFE

HOUR CYBERATTACK LAW PROGRAMMING

ANALYZING HEISENBUGS QUANTUM-RESISTANT

CRYPTOGRAPHY

Cybersecurity 2025
November 2025/Volume 01

1 GPU Drivers Under Fire:

Lessons from the Qualcomm and NVIDIA Flaw Disclosures

GPU drivers are back in the spotlight after recent security
disclosures from Qualcomm and NVIDIA. Both companies
were forced to fix flaws that allowed attackers to escalate
privileges, run code, and bypass protections.

These cases highlight how vulnerable GPU software has
become, especially when it operates close to the kernel.
Qualcomm'’s Zero-Day Issues in Adreno Drivers

In June 2025, Qualcomm patched three zero-day flaws in its
Adreno GPU drivers. The bugs affected millions of Android
devices running Snapdragon chips. Google’'s Android Threat
Analysis Group discovered the flaws and reported them to
Qualcomm.

Two of the bugs, CVE-2025-21479 and CVE-2025-2148, scored
8.6 out of 10 on the CVSS scale. These allowed memory
corruption through specially crafted GPU commandes.

The third bug, CVE-2025-27038, was rated 7.5. It involved a
use-after-free condition in the rendering pipeline. All three
issues let attackers move from user apps to kernel-level
execution.

The flaws were already under attack before the fixes were
made public. Google did not disclose who was behind the
exploitation, but security analysts believe spyware vendors or
state actors were likely involved.

Qualcomm delivered the patches to device manufacturers in
May. Users still rely on OEMs to package and release updates,
which delays protection.

This is not the first time Adreno drivers have caused
problems. Past research from Google’s Android Red Team
showed that GPU code often lacks permission checks. That
gives any app a path to poke at privileged driver functions,
making kernel exploits more likely.

NVIDIA's Pile of Vulnerabilities

NVIDIA has published two major security updates this year.
In April, it fixed CVE-2025-23244. This bug affected Linux
systems and let attackers gain higher privileges from a non-
root position. The vulnerability allowed remote code
execution, denial of service, and data tampering.

The July update was broader. It fixed seven vulnerabilities
across Windows and Linux. These included installer privilege
flaws, memory errors, use-after-free issues, and information
leaks.

CVE-2025-23276 and CVE-2025-23281 were among the most
serious, both scoring above 7.5. Exploiting these flaws could
result in local privilege escalation or data corruption.

NVIDIA issued patches for multiple driver branches. These
included R535.247.01, R550.163.01, R570.133.07, and
R575.51.02. Enterprise users had to apply the right update for
their version. NVIDIA did not confirm active exploitation, but
users were warned to update immediately.

Why GPU Drivers Keep Causing Trouble

These flaws all share one theme: GPU drivers carry too much
power. They run close to the kernel. They manage memory.
They accept input from apps without deep validation. They
were designed for speed and throughput, not for safety.

As graphics hardware has evolved, the role of the GPU driver
has grown. It now supports Al, gaming, encryption, and
more. A GPU driver can expose a wide surface to attackers
while operating with near-kernel privileges.

On Android, Google has flagged GPU drivers as a risk. Apps
can access them freely, even when they contain bugs. An
untrusted app can send malformed GPU commands and
exploit memory handling issues to gain control. That puts
billions of devices at risk.

Academic research has shown that GPUs can leak memory
between users. One study found that uninitialized register
access could let users spy on others’ workloads. The problem
extends beyond phones—it affects desktops, servers, and
cloud environments.

https://nvd.nist.gov/vuln/detail/CVE-2025-21479
https://nvd.nist.gov/vuln/detail/CVE-2025-2148
https://nvd.nist.gov/vuln/detail/CVE-2025-27038
https://nvd.nist.gov/vuln/detail/cve-2025-23244
https://vulners.com/cve/CVE-2025-23276
https://feedly.com/cve/CVE-2025-23281

Slow Patches and Poor Visibility

One big problem is the time it takes to deliver fixes.
Qualcomm made the patches available in May, but most
users did not get them until June or later. Android users
depend on phone manufacturers to push updates. Many
older phones may never get a fix.

NVIDIA controls its own update process, but still requires
users to install the correct driver manually or through a
managed system. Many users skip updates if performance is
stable. That leaves them exposed.

Another issue is visibility. Most users don’t know what a GPU
driver patch really fixes. Manufacturers rarely explain that a
graphics update closes a privilege escalation path. Unless a
vulnerability makes the news, the threat may go unnoticed.

What Needs to Change

GPU drivers must be audited more thoroughly. Vendors
should apply modern fuzzing and static analysis techniques
to driver code. They should isolate GPU execution contexts
and enforce strict boundaries around memory operations.
Security researchers should keep probing GPU interfaces.
Many of the flaws this year were found by independent
teams, not by the vendors themselves.

Device makers must commit to faster patch delivery. If an
OEM cannot patch GPU drivers quickly, it should not ship
devices with exposed components. Google's push for
modular driver updates through Project Treble and Android’s
Mainline modules is one possible fix, but adoption is still
limited.

Users need to take updates seriously. On Windows and Linux,
apply new NVIDIA drivers as soon as they're released. On
Android, check for updates often and avoid devices that
don't receive security patches.

To Conclude

GPU drivers have grown from performance tools into
complex systems that run at the heart of computing. The
recent flaws in Qualcomm and NVIDIA drivers show how
dangerous poor GPU security can be. These aren’t abstract
bugs. They've been exploited in real attacks.

Vendors must treat GPU drivers like any other kernel
component. That means full testing, rapid patches, and clear
communication. It also means stripping out legacy
assumptions that graphics code is low-risk.

Security starts at the driver level. These disclosures make that
clear.

2 New York Passes 72-Hour Cyberattack Reporting Law

Local governments in New York must now report
cyberattacks within 72 hours. If they pay ransom, they must
report that within 24 hours.

A detailed explanation must follow within 30 days. The new
law also requires public employees to complete annual
cybersecurity training.

Full Backing from Lawmakers

Senate Bill S.7672A/A.6769A passed both chambers without
any opposition. The law builds on Governor Kathy Hochul's
earlier cybersecurity plan. In 2022, she appointed the state'’s
first cyber officer. Since then, the administration has pushed
to tighten rules for public systems.

Clear Deadlines for Reporting

Under the new rule, any county, city, or agency hit by a
cyberattack must alert the New York State Division of
Homeland Security and Emergency Services within three
days.

If the agency pays ransom, it must report that within one
day. It then has 30 days to explain the decision. That report
must include how much was paid and whether legal review
was done.

Goal Is Faster Response and Less Damage
State officials say these deadlines help contain threats. Early
reporting allows the state to track attacks, warn others, and
send technical help if needed.

The law also closes a gap. Financial companies already follow
similar rules under New York’s Department of Financial
Services. That regulation has required 72-hour incident
reporting since 2017. New York's new law for public agencies
brings the same urgency to schools, towns, and counties.

Governor and Cyber Officials Weigh In
Governor Hochul said the law protects basic services across
the state. She called cybersecurity a core duty of public
agencies.

Colin Ahern, New York's chief cyber officer, said attackers
now target small towns and under-resourced systems. He
said the new rule brings structure to a problem that has long
been patchy across local governments.

Web Portal to Report Attacks

To help with compliance, the state launched a web portal.
Local agencies can file reports and request help through a
single platform. This lets state teams track incidents and
coordinate faster.

Jackie Bray, head of Homeland Security and Emergency
Services, said the system is built for speed. She said delays
cost time and increase damage.

Public Training Now Required

The law also introduces yearly cybersecurity training for all
public employees. The state will set minimum security rules
that every public agency must follow.

The goal is to make basic protection routine. Local
governments must now update their internal policies and
schedule training sessions.

Ransom Reporting in Practice

If a city discovers a ransomware attack on August 10, it must
report the breach by August 13. If it pays a ransom on August
1, it must file that report by August 12. By September 10, the
city must submit a full written explanation of its decision.

These deadlines are firm. Reports must go through the
state’s new portal.

Some Pushback, but Support Holds

Some smaller towns have raised concerns. They say the
timelines may be hard to meet with limited staff. State
officials say the portal and training will help. They also say
centralized reports will show broader patterns, which helps
prevent future attacks.

Assembly member Billy Jones, one of the sponsors, said the
law gives local leaders a rulebook. He said many towns didn’t
know what to do after being hit. Now, they do.

Law Is Now Active

The law took effect immediately. All public agencies in the
state must follow it. Those that fail to meet the reporting
deadlines may face penalties.

https://www.nysenate.gov/legislation/bills/2025/S7672/amendment/A
https://www.nysenate.gov/legislation/bills/2025/A6769/amendment/A
https://www.governor.ny.gov/news/governor-hochul-announces-legislation-now-effect-strengthen-cybersecurity-across-new-york

A First for Municipal Systems

New York is among the first states to require such reporting
from local governments. Most state rules have focused on
private companies and critical infrastructure. This law brings
schools, town halls, and public agencies into the same
system.

The focus is clear: act fast, report early, limit damage. Cyber
threats grow every day. This law sets a simple rule, no more
silence after an attack

3 Analyzing Heisenbugs with Hardware-Assisted Kernel Debugging

Heisenbugs are hard to detect bugs that can be omitted
when observed in optimized and concurrent systems
commonly used nowadays. Kernels are particularly difficult
to debug with these bugs because the most traditional
debugging approaches cannot be used due to timing,
concurrency, and compiler optimizations.

Often surfacing only at scale in production, Heisenbugs
require more than standard debugging. This article explores
how combining structured techniques with hardware-
assisted tools can help uncover and resolve these tricky
system-level issues.

Understanding Heisenbugs

The heisenbug is usually a result of such complications as
uninitialized memory, compiler optimization reordering, lack
of determinism of memory layout, or race conditions.

Bugs can sometimes vanish during debug mode but remain
in release, since debug builds, unlike release, zero out
memory or serialize timing, as a means of saving
programmer time to debug the program.

With kernel-mode, there is more to lose: tiny disturbances
like enabling JTAG or tracepoints can change scheduling,
serializers, or register spills, and jeopardize the bug without
anyone realizing it.

Traditional Reproduction Techniques:

Systematic Scheduling

Before hardware tools became mainstream, researchers
used software-based approaches like CHESS (by Microsoft
Research) to systematically explore thread interleavings.
CHESS wraps .NET or Win32 programs, monitors their
execution, and records the "happens-before" graph of thread
interactions. This graph is then used to deterministically
replay thread schedules and expose concurrency issues.

NET Win32 2’:5;5
Program Program ek
Reeplay happens-befare graph

CR e wwe WinR2 ¥ !(‘HMES‘"S
WrAppETS wrAppeTE Record happens-before graph
Win32 library /
GLR Windows 05

SOURCE

The architecture of CHESS involves program instrumentation
and a scheduler that records and replays thread behaviors.
As shown, it integrates with the runtime through wrappers
and feeds execution traces to a search module that
systematically explores all possible thread schedules.

The CHESS model enables reliable reproduction of hard-to-
catch race conditions, even in programs with billions of
potential interleavings.

Scaling Diversified Execution with Hardware

Tracing

Beanstalk is a framework that improves Heisenbug detection
by running the same kernel code across different
configurations, varying instrumentation levels, and hardware
setups.

This technique, called diversified execution, increases the
chances of revealing concurrency-related bugs. Another
prominent aspect of Beanstalk is a metric called the heisen
factor, which measures the difficulty of reproducing a given
bug to determine which bugs to fix first.

https://stackoverflow.com/questions/1574086/how-to-hunt-a-heisenbug
https://www.researchgate.net/publication/390637756_Unveiling_Heisenbugs_with_Diversified_Execution

3 Analyzing Heisenbugs with Hardware-Assisted Kernel Debugging

To assist it, hardware-aided debugger tools such as WinDbg
or HyperDbg are employed in a host-guest pairing, where
the debugger is on the host, and accesses a virtualized
kernel through named pipes or a virtual serial port. This
method does not disturb kernel timing or behavior, making
the trace capture accurate.

Integrated with hardware-level tracing, diversified execution
offers a highly scalable way to detect and follow up on the

hard-to-detect kernel bugs missed by other debugging tools.

Case Study and Empirical Data

A tool called H3, introduced at the USENIX ATC conference,
shows how we can reproduce heisenbugs that happen in
real-world kernel environments. It works by using special
CPU features to capture and replay the exact sequence of
events that caused the bug.

This lets developers recreate and study bugs that were
previously impossible to reproduce, all on normal hardware.
Even though this method is a bit older, it showed that it's
possible to debug tricky kernel bugs without changing the
system in ways that might hide them.

In another example, researchers studied silent data
corruptions, errors caused by faulty hardware that behave
like heisenbugs. Over 18 months, they looked at data from
hundreds of thousands of computers and found hidden
issues in CPUs.

They applied hardware-based debugging to trace backward
the specific instructions that failed, and what caused the
troubles, of all the components of the system, including
hardware and up to the software.

Such examples point out that hardware-level debugging
does not merely represent an option to detect software
flaws, but it also has the potential to uncover hidden
hardware flaws that may be circumvented by other
conventional debugging tools.

Best Practices and Practical Tips

o Don't fill up the system by logging or debugging code:
There is a fine line between sufficient debugging
information and too much. Maintain lightweight tools for
tracking.

e Rely on hardware features for clean tracking: Use
hardware tracing and virtualization-based tools to see
exactly what's happening inside the kernel, without
changing how it behaves.

e Quantify how difficult the bug is: With a scale such as the
heisen factor on the Beanstalk platform, you can
determine how difficult the bug is to reproduce. This
assists in prioritizing bug fixes.

e Automate the reproduction of the bug: Do repeatable
tests that make the bug emerge, so that you can see
whether the bug that existed before was actually fixed
when you get the same bug conditions.

Conclusion

Heisenbugs are among the toughest kernel issues, often
hiding in timing, optimization, and concurrency, and
disappearing under normal debugging. But with hardware-
assisted tracing, tools like HyperDbg and Beanstalk, and
smarter debugging methods, these bugs can now be reliably
found and fixed.

Kernel debugging is shifting from guesswork to a precise,
repeatable process. Developers should explore tools like
HyperDbg, CHESS, Snowboard, and Beanstalk to better
understand and resolve these elusive system-level bugs.

https://www.usenix.org/system/files/conference/atc17/atc17-huang.pdf
https://arxiv.org/abs/2102.11245

4 Al Supply Chain Security — The Hidden Risk Behind Machine Learning Models

Artificial Intelligence (Al) has become central to digital
transformation, but as reliance on pre-trained models and
open datasets grows, so do the security risks hiding inside
the Al supply chain. Recent research and real-world
incidents show that attackers are exploiting these weak links
— tampering with data, frameworks, or models to
compromise Al integrity and trustworthiness.

A Growing Problem Hidden in Plain Sight
Modern Al systems are rarely built from scratch. Developers
typically use pre-trained models from open repositories such
as Hugging Face or TensorFlow Hub. These models are then
fine-tuned using public or proprietary datasets before being
deployed into production systems.

This interdependence of datasets, libraries, and cloud
services has created an Al supply chain, one that mirrors —
and multiplies — the software supply chain problems already
seen with attacks like SolarWinds or Log4j.

In early 2025, multiple cybersecurity labs reported that
malicious models disguised as open-source Al tools were
circulating online. Once integrated, these models quietly
transmitted data to remote servers. The infections were
discovered only after months of undetected operation in
enterprise test environments.

Real-World Attacks on Al Pipelines

In one widely discussed case, researchers found that a
machine learning library in a public repository had been
replaced with a poisoned version. The malicious file shared
the same name and version number but contained hidden
code to capture environment variables, including API tokens.

Another case involved data poisoning in facial recognition
training sets. Attackers subtly altered a small percentage of
labeled images, leading the resulting model to misidentify
individuals of certain demographics. Because the
manipulated samples were statistically insignificant,
traditional validation didn't detect the corruption.

A 2024 report from MIT's Al Policy Lab warned that model
supply chain risks could lead to “invisible influence” attacks,
where poisoned models are used to skew financial, political,
or hiring algorithms without immediate detection.

Why the Al Supply Chain Is Vulnerable

Al's architecture inherently encourages openness — open
datasets, shared models, collaborative code. While this
accelerates innovation, it reduces visibility into provenance
and trust.

Unlike compiled software, Al models are binary blobs that
embed millions or billions of parameters. There's no
straightforward way to verify their internal integrity.

Moreover, existing security tools focus on application-level
vulnerabilities, not on anomalies in model weights or dataset
consistency. This makes the Al stack fertile ground for
sophisticated attackers who prefer stealth over brute force.

Efforts Toward a Secure Al Pipeline

Security researchers and standard bodies are now pushing
for Al provenance frameworks — systems that track every
stage of model creation, from data ingestion to deployment.
NIST and ISO have begun exploring metadata standards for
“Model Bills of Materials” (MBOMs), similar to Software Bills of
Materials (SBOMs). Such documents would list model
sources, training datasets, contributors, and dependencies.

Organizations like OpenAl and Google DeepMind have
already introduced cryptographic model signing to verify
authenticity. Some cloud platforms also offer “trusted
training environments,” which isolate model-building
processes from external interference.

4 Al Supply Chain Security — The Hidden Risk Behind Machine Learning Models

Slow Adoption and the Road Ahead

Despite technical progress, adoption remains slow. Many
smaller companies and researchers still rely on unverified
public models to save time and resources. Awareness of
model-level threats is limited compared to traditional
software vulnerabilities.

As Al continues to integrate into critical infrastructure — from
healthcare diagnostics to autonomous vehicles — the
consequences of supply chain breaches could be
catastrophic. Experts argue that without regulation and
transparency, the next major cyberattack might not target
software — but the data and models that shape it.

To Conclude

Al's promise depends on trust, and that trust begins at the
source. The Al supply chain — once seen as a collaboration
hub — has become a potential attack surface.

Protecting it will require not just new tools but a cultural
shift in how Al systems are built, verified, and shared.

As the boundaries between software and intelligence blur,
securing the supply chain means securing the future of Al
itself.

5 Memory-Safe Programming — The Future of Secure Systems

Software vulnerabilities have long been the Achilles’ heel of
digital infrastructure. Despite decades of innovation, memory
safety issues still account for the majority of high-severity
security flaws. Now, a growing shift toward memory-safe
programming languages like Rust and Go promises to
reshape how we build secure systems — from the operating
system kernel to web browsers.

The Persistent Memory Problem

For nearly half a century, software engineers have relied on C
and C++ for system-level programming. These languages give
developers powerful control over memory — but also make it
easy to misuse it.

Bugs such as buffer overflows, dangling pointers, and use-
after-free errors remain the root cause of critical exploits.
Attackers can use these flaws to gain elevated privileges,
corrupt data, or execute arbitrary code.

A 2024 Microsoft study revealed that over 70% of
vulnerabilities in Windows originate from memory safety
issues. Google echoed similar findings for Chrome and
Android. Despite countless security patches, the pattern
repeats because the underlying cause — unsafe memory
access — persists in legacy codebases.

The Rise of Memory-Safe Languages

Memory-safe languages automatically prevent these
dangerous operations. Rust, in particular, has gained traction
for its strict compile-time guarantees that eliminate whole
classes of memory errors.

By enforcing ownership and borrowing rules, Rust ensures
that only one reference can modify a variable at a time. This
prevents data races, double frees, and null pointer
dereferences before the program even runs.

Tech giants are taking notice. Google is rewriting Android'’s
media stack in Rust, leading to a significant drop in high-
severity bugs. The Linux kernel added official Rust support in
version 6.1, marking the first major shift in kernel
development in decades.

Industry Adoption Accelerates

Microsoft has launched internal projects to rewrite Windows
components in Rust, citing early reductions in crash
telemetry. Amazon Web Services’ lightweight virtualization
engine, Firecracker, is entirely written in Rust — balancing
performance with safety.

Mozilla's Servo engine pioneered safe concurrency, while
Cloudflare’s networking stack now leverages Rust to prevent
memory leaks and overflows.

Even where full migration isn't possible, hybrid models are
emerging. Rust modules are being embedded within C/C++
codebases using interface bindings. This allows gradual
adoption without a complete rewrite, giving developers the
benefits of safety with minimal disruption.

Why It Matters for Cybersecurity

The shift to memory-safe languages represents more than a
trend — it's a fundamental change in software engineering
philosophy. Instead of patching vulnerabilities after they're
exploited, developers can now eliminate them at the source.
Modern compilers and tools, such as LLVM sanitizers and
ARM’s Memory Tagging Extension (MTE), complement this
shift by detecting unsafe memory operations during testing.

However, these are stopgaps. True resilience comes from
designing software where memory corruption is impossible
by default.

Challenges and Transition Costs

The biggest barrier is legacy code. Rewriting decades of
production systems is costly and time-consuming. Moreover,
not all developers are trained in new languages like Rust. Yet
the growing number of critical exploits has made
modernization unavoidable.

Security experts argue that government-funded
infrastructure and safety-critical industries — such as
healthcare, defense, and aviation — should mandate
memory-safe development for future software.

To Conclude

The move toward memory-safe programming is not just a
modernization effort — it's a turning point for cybersecurity.
In the next decade, the phrase “written in Rust” could
become a new trust seal for software, signaling safety by
design.

After years of reactive patching, memory-safe programming
offers something rare in security: prevention that truly lasts.

10

6 Quantum-Resistant Cryptography — Preparing for the Post-Quantum Era

The world’s encryption systems, from online banking to
national defense, rely on mathematical problems that
classical computers can't solve efficiently. But quantum
computing threatens to change that. Once considered
theoretical, quantum machines are advancing fast enough
to endanger today’s cryptographic foundations — leading to
what experts call the post-quantum security challenge.

Quantum Power Meets Classical Vulnerability
Traditional encryption — including RSA, Diffie-Hellman, and
Elliptic Curve Cryptography (ECC) — depends on the difficulty
of factoring large numbers or solving discrete logarithms. A
sufficiently powerful quantum computer, using Shor’s
algorithm, could solve these in hours.

While such systems don't yet exist at full scale, intelligence
agencies and corporations are already preparing. The fear is
that attackers could harvest encrypted data today and
decrypt it later once quantum computers mature.

The Global Push for Post-Quantum
Cryptography

In response, the U.S. National Institute of Standards and
Technology (NIST) has spent years evaluating new algorithms
designed to resist quantum attacks. In 2024, it finalized the
first generation of post-quantum cryptography (PQC)
standards.

The selected algorithms include:
o CRYSTALS-Kyber for key encapsulation and exchange
o CRYSTALS-Dilithium for digital signatures
e Falcon for compact, high-performance signatures
o SPHINCS+, a hash-based backup algorithm emphasizing
long-term resilience

These new cryptosystems rely on lattice-based and hash-
based problems that are computationally infeasible even for
guantum machines.

Industry Transition Begins

Major technology companies have already started adopting
PQC in hybrid configurations. Google has implemented
hybrid TLS in Chrome, combining classical and PQC key
exchanges. Cloudflare and AWS are testing similar
deployments.

Meanwhile, governments worldwide — including the U.S,,
Japan, and members of the EU — are mandating migration
plans for all critical systems.

However, the transition is not straightforward. Post-quantum
algorithms often have larger key sizes, require more
processing power, and must be integrated without breaking
legacy compatibility. Many loT and embedded devices lack
the resources to handle PQC's computational demands.

Migration Challenges

Organizations must first inventory their cryptographic assets
— identifying what encryption they use and where. Next, they
need crypto-agile systems capable of swapping algorithms
without full redesigns.

Hardware vendors are also exploring new chips optimized
for PQC, aiming to make future encryption faster and more
energy-efficient.

One overlooked issue is data that's already been encrypted
with classical methods. Even if PQC is adopted tomorrow,
any sensitive data stored using traditional keys may remain
vulnerable to “decrypt later” attacks in the future.

11

6 Quantum-Resistant Cryptography — Preparing for the Post-Quantum Era

Preparing for a Quantum Future

Experts advise organizations to begin transition planning
immediately. The National Security Memorandum 10 (NSM-
10) issued by the U.S. government requires federal agencies
to begin PQC migration by 2027. Industry leaders suggest
private enterprises follow suit to maintain interoperability
and trust.

Cybersecurity researchers believe that the “quantum threat
timeline” — once thought to be 30 years away — could shrink
dramatically as companies like IBM, Google, and D-Wave
achieve exponential growth in qubit performance.

To Conclude

Quantum computing represents both opportunity and
existential risk. If the cryptographic world waits until
guantum computers are ready, it will be too late to secure
what's already encrypted.

The adoption of quantume-resistant algorithms must begin
now, ensuring that today’s secrets remain secure tomorrow.
As one security researcher aptly put it: “Post-quantum
cryptography isn’t about the future of encryption — it's about
preserving the past.”

12

