YBER Sl RITY

FRONT 7> CODE

svSTEM SECURITY ENVOLUTION & ADVAMCED E-PLOIT
October 2025

-
. a— e D
STUXNET THEN & NOW DRIVER FUZZING 101
NSO GROUP & PEGASUS UNWINDING KERNEL STACK TRACES
BRING-YOUR-OWN-VULNERABLE- “SECURE BY DESIGN,, POLICY
DRIVER (BYOVD GATHERS MOMENTUM IN THE UK

Cyhersecurity 2025
October 2025/ Volume 01

1 Stuxnet Then & Now: Malware That Broke New Ground

Stuxnet (uncovered in 2010) was a watershed moment: it
was the first known malware designed to cause physical
destruction. This highly sophisticated worm infiltrated Iran’s
Natanz nuclear plant, believed to be written by nation-state
actors, and directly sabotaged the industrial control systems
there. Once inside, Stuxnet searched for Siemens industrial
control software (used to run uranium centrifuges) and
issued malicious commands. Stuxnet secretly
commandeered the plant’s Siemens PLC controllers and
subtly tweaked centrifuge rotation speeds to induce
mechanical failure (malwarebytes.com). While it was
running, Stuxnet disguised its activities by replaying fake
“normal” sensor readings to operators, so nobody realized the
turbines were being pushed to the breaking point. In the
words of cybersecurity analysts, Stuxnet was “the most
aggressive cyber-physical attack ever documented”
(malwarebytes.com). It proved that malware could carry a
literal “warhead” using code to bend real-world physics.

The legacy of Stuxnet is everywhere in modern cybersecurity.
Following its debut, similar attacks on industrial systems
began to emerge. For instance, in 2016 a malware known as
“CrashOverride/Industroyer” was discovered, capable of
issuing shutdown commands to power grid breakers.
Investigators say this tool was used to briefly black out parts
of the Ukrainian electrical grid in December 2016
(reuters.com). Likewise, in 2017 the “Triton (aka Trisis)"
malware hacked into safety controls of a Saudi Arabian
petrochemical plant. Triton's breach of industrial safety
systems was a first-of-its-kind “watershed” event: hackers
could potentially have shut down the plant by deceiving
safety controllers (the attackers’ tools “could be fooled to
indicate that everything is okay” even while the plant was
being sabotaged) (reuters.com). Fortunately in that case the
malware prematurely shut itself down, so disaster was
averted, but the lesson was chilling.

STUXnet

MALWARE THAT BROKE NEW GROUND

More recently, even “regular’ ransomware gangs have
targeted critical infrastructure. A stark example is the
Colonial Pipeline attack in May 2021. Hackers seized control
of the U.S. East Coast’s largest fuel pipeline, forcing it to shut
down entirely for nearly a week. Colonial Pipeline paid a $4.4
million ransom to regain access, but not before the outage
caused huge gasoline shortages in the Southeast
(en.wikipedia.org). This incident underlined that IT-centric
threats can have massive physical consequences when
energy and utility networks get hit.

Despite all this, experts warn that many critical systems
remain just as exposed as they were 15 years ago. At a 2025
U.S. House hearing, veteran ICS security analyst Joe Weiss
bluntly observed that “critical infrastructures continue to be
susceptible to Stuxnet-type attacks” (controlglobal.com). In
other words, the vulnerabilities that Stuxnet exploited,
trusting field sensors, unsegmented OT (Operational
Technology) networks, obscure protocols, have not been fully
fixed. Many industrial control systems still lack modern
protections or even awareness of these threats. As Weiss
noted, sophisticated hacks often “look like equipment
malfunctions”, so incidents can slip by undetected if
operators assume it’s just a sensor glitch (controlglobal.com).
This remains a dangerous blind spot: an attack on a turbine
might be mistaken for a hardware failure unless process-
level monitoring is in place.

https://www.malwarebytes.com/blog/news/2013/11/stuxnet-new-light-through-old-windows#:~:text=Stuxnet%20was%20first%20uncovered%20in,engineers%20crazy%20looking%20for%20causes
https://www.malwarebytes.com/blog/news/2013/11/stuxnet-new-light-through-old-windows#:~:text=Stuxnet%20counts%20as%20the%20most,Iran%2C%20thanks%20to%20unwitting%20contractors
https://www.reuters.com/article/cyber-attack-utilities/security-firms-warn-of-newcyber-threat-to-electric-grid-idUSL1N1J61JK/#:~:text=Analysis%20of%20the%20malware%2C%20known,infrastructure%20security%20firm%20Dragos%20Inc
https://www.reuters.com/article/technology/hackers-halt-plant-operations-in-watershed-cyber-attack-idUSKBN1E8271/#:~:text=Compromising%20a%20safety%20system%20could,halting%20destructive%20attacks%2C%20they%20said
https://en.wikipedia.org/wiki/Colonial_Pipeline_ransomware_attack#:~:text=On%20May%207%2C%202021%2C%20Colonial,68%20to%20restore%20the
https://www.controlglobal.com/blogs/unfettered/blog/55305476/stuxnet-cyberattack-15-years-later-the-unlearned-lessons#:~:text=Critical%20infrastructures%20continue%20to%20be,security%20issues
https://www.controlglobal.com/blogs/unfettered/blog/55305476/stuxnet-cyberattack-15-years-later-the-unlearned-lessons#:~:text=happened%20in%20defending%20critical%20infrastructures,related

The good news is that awareness is finally translating into
defense. Industry guidelines (like NIST's ICS security
framework) now emphasize isolating OT networks from the
Internet, implementing strict access controls, and closely
monitoring physical processes, not just network traffic.
Operators are urged to keep detailed inventories of sensors
and controllers, so anomalies can not hide in the weeds.
Lessons from Stuxnet and its successors have led to new
tools that watch the “physical layer” of systems: for example,
alarms if a centrifuge spins beyond safe limits. Public-private
threat-sharing forums (e.g. ICS-CERT) exist so that operators
learn quickly about new ICS malware variants. In short,
defenders are moving toward a holistic view that spans
software and hardware.

T

Industrial control room

In summary, Stuxnet broke unprecedented ground by
showing cyber weapons can cause real-world damage. Its
story reshaped cybersecurity strategy: no longer is blocking
Internet intrusions enough. We must also protect the tiny

devices and control loops that actually run our infrastructure.

Fifteen years later, Stuxnet’'s impact is still unfolding, a
reminder that defending against cyber-physical attacks is an
ongoing mission (controlglobal.com; reuters.com).

Key Takeaways: Stuxnet was the first malware “cyber-
weapon” that physically damaged equipment
(malwarebytes.com). In the years since, new ICS-focused
malware (Industroyer, Triton, etc.) have struck utilities and
plants (reuters.com). Experts now emphasize that many
industrial systems are still vulnerable, lacking simple
protections and wrongly treated like ordinary IT networks
(controlglobal.com). Defenses must span networks and
physical processes (segmentation, sensor checks, ICS-aware
monitoring). In short, Stuxnet taught us that code can have a
physical “warhead,” and protecting critical infrastructure
means learning to think like a defender of both software and
hardware (malwarebytes.com).

https://www.malwarebytes.com/blog/news/2013/11/stuxnet-new-light-through-old-windows#:~:text=Stuxnet%20was%20first%20uncovered%20in,engineers%20crazy%20looking%20for%20causes
https://www.reuters.com/article/cyber-attack-utilities/security-firms-warn-of-newcyber-threat-to-electric-grid-idUSL1N1J61JK/#:~:text=Analysis%20of%20the%20malware%2C%20known,infrastructure%20security%20firm%20Dragos%20Inc
https://www.controlglobal.com/blogs/unfettered/blog/55305476/stuxnet-cyberattack-15-years-later-the-unlearned-lessons#:~:text=Critical%20infrastructures%20continue%20to%20be,security%20issues
https://www.malwarebytes.com/blog/news/2013/11/stuxnet-new-light-through-old-windows#:~:text=Once%20active%2C%20it%20went%20to,screens%20while%20doing%20its%20thing
https://www.controlglobal.com/blogs/unfettered/blog/55305476/stuxnet-cyberattack-15-years-later-the-unlearned-lessons#:~:text=Critical%20infrastructures%20continue%20to%20be,security%20issues
https://www.reuters.com/article/technology/hackers-halt-plant-operations-in-watershed-cyber-attack-idUSKBN1E8271/#:~:text=Compromising%20a%20safety%20system%20could,halting%20destructive%20attacks%2C%20they%20said

2 NSO Group & Pegasus: Unraveling the Spyware Scandal

Pegasus is NSO Group’s notorious spyware that can stealthily
hijack smartphones using zero-click exploits; no user action
needed; and harvest virtually everything on the device: texts,
calls, location, camera, microphone, you name it
(@amnesty.org). NSO Group is an Israeli cybersecurity firm that
develops surveillance tools, primarily marketed to
governments for law enforcement and national security
purposes. Originally sold to fight terrorism and crime,
forensic reports show it was widely abused by governments.
Investigations revealed that state clients around the globe,
from Saudi Arabia and Mexico to Poland and El Salvador
were using Pegasus to spy on journalists, activists and
dissidents (reuters.com; reuters.com). In fact, the Pegasus
Project (a 2021 media investigation,involved collaboration
among 17 media organizations, led by Forbidden Stories, to
analyze a leaked list of potential surveillance targets,
exposing the scale of Pegasus misuse) exposed a leaked list
of over 50,000 phone numbers including world leaders and
reporters, across 50+ countries as potential surveillance
targets (amnesty.org). That scandal prompted global
outrage. And Pegasus is not just historical news: Amnesty
International’s tech lab recently confirmed that two
prominent Indian journalists were hacked with Pegasus in
late 2023 (amnesty.org), showing this invasive tool is very
much alive and being used today.

PEGASUS SPYWARE INFILTRATION

ATTACKER CONTACTS

seeesiees £ f> ®

MESSAGES

—/ - @

MICROPHONE

ATTACKER
SERVER

A conceptual diagram of a Pegasus spyware attack

Detecting and preventing Pegasus spyware is challenging
due to its advanced nature and the use of zero-click exploits.
Traditional antivirus software may not be effective against
such sophisticated threats. However, specific tools like the
Mobile Verification Toolkit (MVT) developed by Amnesty
International can analyze mobile devices for indicators of
compromise related to Pegasus. Additionally, Apple has
introduced Lockdown mode in iOS 16 to reduce the attack
surface, making it harder for spyware to exploit
vulnerabilities. Users should keep their devices updated, use
secure communication channels, and be cautious with app
permissions to minimize risks (us.norton.com).

Legal Backlash and Accountability: After years of secretive
abuse, NSO is finally under fire. In May 2025, Meta
(WhatsApp’s parent) won a $168 million jury verdict against
NSO (reuters.com). U.S. courts found NSO had secretly
exploited a WhatsApp bug to install Pegasus on users’
phones. The verdict awarded about $444K in compensatory
damages plus $167M in punitive fines (reuters.com). Reuters
reports that NSO is now “a poster child for the surveillance
industry and their abuses and impunity,” long arguing its
tools target only terrorists and pedophiles while evidence
showed its software was tied to widespread spying
(reuters.com). Trial testimony even revealed NSO had a 140-
person R&D team with a $50M budget for hacking phones
and recorded government customers such as Uzbekistan,
Saudi Arabia and Mexico (reuters.com). Apple has sued NSO
too (in late 2021) for similar allegations that U.S. iPhones
were breached by Pegasus (reuters.com). Apple’s lawsuit
seeks to hold NSO accountable for targeting iPhone users
and aims to set a precedent for restricting spyware misuse.
These landmark cases signal that cyber-spyware vendors can
be held legally accountable for abuses.

https://www.amnesty.org/en/latest/news/2023/12/india-damning-new-forensic-investigation-reveals-repeated-use-of-pegasus-spyware-to-target-high-profile-journalists/#:~:text=The%20Security%20Lab%20recovered%20evidence,version%20available%20at%20the%20time
https://www.reuters.com/technology/pegasus-phone-spyware-used-target-30-thai-activists-cyber-watchdogs-say-2022-07-18/#:~:text=Pegasus%20has%20been%20used%20by,trade%20blacklist
https://www.reuters.com/sustainability/society-equity/court-clash-between-meta-nso-ends-168-million-defeat-spyware-firm-2025-05-06/#:~:text=NSO%2C%20an%20Israeli%20firm%20that,108%2C%20and%20El%20Salvador
https://forbiddenstories.org/
https://www.amnesty.org/en/latest/press-release/2021/07/the-pegasus-project/#:~:text=NSO%20Group%E2%80%99s%20spyware%20has%20been,journalists%2C%20including%20Jamal%20Khashoggi%E2%80%99s%20family
https://www.amnesty.org/en/latest/news/2023/12/india-damning-new-forensic-investigation-reveals-repeated-use-of-pegasus-spyware-to-target-high-profile-journalists/#:~:text=Forensic%20investigations%20by%20Amnesty%20International%E2%80%99s,case%20occurring%20in%20October%202023
https://us.norton.com/blog/emerging-threats/pegasus-spyware
https://www.reuters.com/sustainability/society-equity/court-clash-between-meta-nso-ends-168-million-defeat-spyware-firm-2025-05-06/#:~:text=WASHINGTON%2C%20May%206%20%28Reuters%29%20,world%27s%20best%20known%20spyware%20company
https://www.reuters.com/sustainability/society-equity/court-clash-between-meta-nso-ends-168-million-defeat-spyware-firm-2025-05-06/#:~:text=WASHINGTON%2C%20May%206%20%28Reuters%29%20,world%27s%20best%20known%20spyware%20company
https://www.reuters.com/sustainability/society-equity/court-clash-between-meta-nso-ends-168-million-defeat-spyware-firm-2025-05-06/#:~:text=NSO%2C%20an%20Israeli%20firm%20that,108%2C%20and%20El%20Salvador
https://www.reuters.com/sustainability/society-equity/court-clash-between-meta-nso-ends-168-million-defeat-spyware-firm-2025-05-06/#:~:text=The%20court%20heard%20about%20NSO%27s,NSO%27s%20closely%20guarded%20client%20list
https://www.reuters.com/technology/apple-files-lawsuit-against-nso-group-2021-11-23/#:~:text=Nov%2023%20%28Reuters%29%20,users%20with%20its%20Pegasus%20spyware

D

-
NSO GROUP

111010
/1000

o
Pegasus spyware

Policy and Regulation: The Pegasus saga has spurred swift
policy action. The U.S. Commerce Dept. formally blacklisted
NSO in 2021, banning U.S. exports to NSO as punishment for
its “malicious” spyware sales to foreign governments
(commerce.gov). In Europe, lawmakers have opened
inquiries into Pegasus use, the EU Parliament even set up a
special committee to investigate reports that Pegasus and
similar spyware were used against EU citizens and leaders
(politico.eu). Meanwhile NGOs are demanding stricter
controls. Human Rights Watch warns that governments
“should urgently suspend sales and transfers” of such
spyware until proper human-rights-protecting oversight is in
place (hrw.org). Amnesty International and other groups
have similarly called for export bans or licenses revocation,
emphasizing that unchecked surveillance tools violate
human rights. The bottom line: many experts now say our
laws and norms have not kept up with these intrusions. As
one researcher put it, Pegasus reminds us that code can
have physical “warheads,” so without new ethical rules and
regulations our democracies and privacy are at risk (hrw.org;
commerce.gov).

The commercialization of advanced surveillance tools like
Pegasus has created a lucrative market, with governments
paying between $3 million and $30 million for access to such
capabilities, as revealed in trial testimony. This high price
reflects the tool's sophistication and comprehensive
surveillance features. However, the financial incentives also
encourage the proliferation of these technologies, potentially
leading to increased misuse and human rights violations.
Consequently, there is an urgent need for stricter regulations
and oversight to ensure that surveillance tools are used
ethically and in accordance with legal standards
(lookout.com).

In summary, Pegasus taught a hard lesson: unrestrained
digital surveillance erodes trust. The NSO/WhatsApp trial and
international scrutiny show the tide is turning toward
accountability. Moving forward, To prevent future abuses
both governments and private tech companies will need
clear, enforceable rules for any hacking tools, or face losing
public trust and legal battles.

https://www.lookout.com/blog/protect-against-pegasus-spyware
https://www.commerce.gov/news/press-releases/2021/11/commerce-adds-nso-group-and-other-foreign-companies-entity-list#:~:text=NSO%20Group%20and%20Candiru%20,based%20international%20order
https://www.politico.eu/article/pegasus-use-5-eu-countries-nso-group-admit/#:~:text=EU%20lawmakers%20launched%20the%20inquiry,91%C2%A0in%20Spain%2C%20Poland%20and%20Hungary
https://www.hrw.org/news/2021/07/30/unchecked-spyware-industry-enables-abuses#:~:text=%E2%80%9CDisturbing%20reports%20about%20Pegasus%20again,sales%20and%20transfers%20of%20surveillance
https://www.hrw.org/news/2021/07/30/unchecked-spyware-industry-enables-abuses#:~:text=%E2%80%9CDisturbing%20reports%20about%20Pegasus%20again,sales%20and%20transfers%20of%20surveillance
https://www.commerce.gov/news/press-releases/2021/11/commerce-adds-nso-group-and-other-foreign-companies-entity-list#:~:text=NSO%20Group%20and%20Candiru%20,based%20international%20order

3 Bring-Your-Own-Vulnerable-Driver (BYOVD): Hijacking Legitimate Binaries

Bring-Your-Own-Vulnerable-Driver (BYOVD): Hijacking
Legitimate Binaries

Why are BYOVD Attacks Effective?

Trusted binaries are whitelisted

How do attackers exploit vulnerable drivers?
BYOVD Attacks: Real World Examples
RobbinHood (Gigabyte driver)

Lazarus (Dell DBULil)

How does this Hijack Legitimate Binaries?
Terminate or alter security processes

Load unsigned code into kernel

Bypass Code Integrity

Detection and Mitigation Strategies

1. Driver whitelisting and auditing

2. Patch or block vulnerable drivers

3. Harden driver loading

4. Monitor kernel telemetry

5. Use behavior-based detection

6. Contain suspected compromises quickly
To Conclude

Bring-Your-Own-Vulnerable-Driver (BYOVD) is a technique
where attackers drop and load a trusted but vulnerable,
signed kernel driver into a Windows system. Since the driver
is legitimate and signed, the operating system accepts it. The
attacker then exploits the driver's flaw to perform actions at
kernel level.

Kernel drivers run with ring-0 privileges. That lets attackers
read or write memory, escalate to SYSTEM, disable
protections, or load unsigned code. This way, they hijack
trusted binaries to bypass security.

BYOVD is gaining popularity among threat actors because it
offers high stealth and low detection rates. It is different from
traditional malware because these drivers slip past most
defenses due to their signed status.

Why are BYOVD Attacks Effective?

One reason BYOVD works so well is that many organizations
rely on signature-based detection. These drivers are already
signed and trusted, making them less likely to raise red flags.

Trusted binaries are whitelisted

Signed drivers pass Windows Driver Signature Enforcement.
These binaries are often trusted by EDR and antivirus
solutions. As a result, using a vulnerable driver is more covert
than deploying malware.

Kernel-level access

Once loaded, the driver runs in kernel mode. It can escalate
privileges, disable security features, patch MSRs, or overwrite
raw disk sectors.

How do attackers exploit vulnerable drivers?
BYOVD attacks follow a clear pattern:

1. Drop a signed, vulnerable driver - often reused from
legitimate software.

2. Load the driver - using admin rights or service creation.

3. Exploit memory or control flaws - for privilege escalation
or disabling security services.

4. Hijack trusted binaries - such as EDR components or
Windows processes.

5. Persist or drift laterally - by planting rootkits, dropping
ransomware, or mining cryptominer.

BYOVD Attacks: Real World Examples

Many high-profile campaigns have leveraged BYOVD tactics.
These include ransomware groups and nation-state actors
who exploit the technique for stealth and persistence.

RobbinHood (Gigabyte driver)

In 2019, RobbinHood ransomware abused the gdrv.sys driver
from Gigabyte. It exploited CVE-2018-19320 to disable Driver
Signature Enforcement, then installed its own malicious
driver.

BlackByte (MSI Afterburner)

BlackByte used RTCore64.sys, the MSI Afterburner driver
(CVE-2019-16098), to terminate over 1,000 security-related
processes.

Lazarus (Dell DBUtil)

North Korea's Lazarus APT abused dbutil_2_3.sys (Dell's
firmware driver, CVE-2021-21551) in 2021. The driver loaded a
rootkit and disabled ETW, filesystem, registry and process
tracing.

https://nvd.nist.gov/vuln/detail/CVE-2018-19320
https://answers.microsoft.com/en-us/windows/forum/all/rtcore64sys-bsod-in-windows-11-with-msi/3e0c5fce-79d2-4f76-8ae8-4e17c2132c1e
https://www.rapid7.com/db/modules/exploit/windows/local/cve_2021_21551_dbutil_memmove/
https://www.linkedin.com/pulse/bring-your-own-vulnerable-driverbyovdattack-technique-ashwin-harish-p?utm_source=chatgpt.com
https://en.wikipedia.org/wiki/Protection_ring
https://cymulate.com/blog/defending-against-bring-your-own-vulnerable-driver-byovd-attacks/?utm_source=chatgpt.com

RansomHub (EDRK:illShifter tool)

In 2024, RansomHub launched EDRKIillShifter. It loaded a
vulnerable driver via a password-protected loader. It then
exploited and shut down EDR agents before executing
ransomware.

GHOSTENGINE (Cryptominers)

The REF4578 campaign used aswArPot.sys (Avast) and IObit’s
unlocker driver to kill EDR processes and install a
cryptominer called XMRig.

How does this Hijack Legitimate Binaries?
Hijacking occurs when vulnerable drivers are used to alter or
terminate legitimate security binaries. Attackers use kernel
privileges to tamper with system integrity.

Terminate or alter security processes

Vulnerable drivers may allow arbitrary kernel memory writes.
Attackers use these to pause or kill security process threads.
This disables protections silently.

Load unsignhed code into kernel
Some drivers allow mapping of unsigned code. Attackers
exploit this to load rootkits, unsigned drivers, or alter MSRs.

Bypass Code Integrity

Drivers that manipulate MSR or IOPORT registers can disable
Code Integrity and HVCI. This pits Windows into loading
unauthorized drivers freely.

Detection and Mitigation Strategies

Blocking BYOVD requires both proactive and reactive steps.
Endpoint monitoring, driver control policies, and behavior
analytics all play a role.

1. Driver whitelisting and auditing

Keep an up-to-date whitelist of approved drivers and review
it regularly. Use configuration management tools and
endpoint monitoring to detect drivers that aren't authorized
or are no longer in use.

This allows only signed and verified drivers run on the
system. Learn more about maintaining endpoint security
through driver validation practices.

2. Patch or block vulnerable drivers

It is needed to monitor trusted sources like CVE databases
and hardware vendor bulletins for driver-related security
advisories.

Once a vulnerability is disclosed, either patch it immediately
or block the driver using Group Policy or endpoint protection
tools. Quick response limits the time attackers can exploit
the flaw. See how to manage known driver vulnerabilities.

3. Harden driver loading

Another strategy is to restrict who can load new drivers by
minimizing admin-level access. You can use features like
Windows Defender Application Control (WDAC) and enforce
kernel-mode code integrity policies. These tools help block
unsigned or unapproved drivers from loading during
runtime.

4. Monitor kernel telemetry

You can use tools like Windows Event Viewer, Sysmon or
other commercial telemetry platforms to log kernel-level
events.

Another thing is to set alerts for unexpected driver loads
such as unsigned or outdated ones and watch for suspicious
IOCTL behavior that could signal exploitation attempts. Also
learn how telemetry insights support real-time detection.

5. Use behavior-based detection

Signature-based solutions alone won't catch BYOVD attacks.
Use EDR or XDR platforms with behavioral analytics to
identify anomalies like unusual driver installs or EDR agent
tampering. Monitoring patterns linked to driver execution
helps flag suspicious activity.

6. Contain suspected compromises quickly

If you suspect a BYOVD incident, isolate the device from the
network immediately to stop lateral movement. Perform
memory analysis if needed.

If the system’s kernel integrity is compromised, then a full re-
image is often the safest route. This helps to make sure that
the threat is fully removed.

https://www.trendmicro.com/en_us/research/24/i/how-ransomhub-ransomware-uses-edrkillshifter-to-disable-edr-and-.html
https://www.darkreading.com/endpoint-security/ransomhub-rolls-out-brand-new-edr-killing-byovd-binary?utm_source=chatgpt.com
https://www.file.net/process/aswarpot.sys.html
https://thehackernews.com/2024/05/ghostengine-exploits-vulnerable-drivers.html?utm_source=chatgpt.com
https://www.crowdstrike.com/en-us/blog/falcon-prevents-vulnerable-driver-attacks-real-world-intrusion/?utm_source=chatgpt.com
https://blogs.vmware.com/security/2023/04/bring-your-own-backdoor-how-vulnerable-drivers-let-hackers-in.html?utm_source=chatgpt.com
https://www.crowdstrike.com/en-us/blog/falcon-prevents-vulnerable-driver-attacks-real-world-intrusion/?utm_source=chatgpt.com

To Conclude

BYOVD attacks hijack legitimate, signed drivers to achieve
kernel-level control. They bypass WDSE and many security
tools. Attackers use them to disable protections, escalate
privileges, or load rootkits.

Organizations face significant risk from BYOVD. Frequent
vulnerabilities exist in gaming, printer, storage, and firmware
driver packages.

To defend against BYOVD, teams should enforce driver
whitelisting, timely patching, strict privilege management,
telemetry, and behavior monitoring. These steps help detect
and block driver-based hijacks before they compromise
binaries at kernel level.

https://www.halcyon.ai/blog/understanding-byovd-attacks-and-mitigation-strategies?utm_source=chatgpt.com

4 Driver Fuzzing 101: Modern Tools to Catch Bugs Before Hackers Do

Driver fuzzing is a growing technique used to identify hidden
vulnerabilities in some of the most critical parts of a system:
kernel drivers.

These drivers manage communication between the
operating system and hardware. Because they run with high
privileges, even minor bugs can lead to major consequences
like system crashes or privilege escalation.

Instead of waiting for attackers to discover these flaws,
security teams now rely on driver fuzzing to simulate unusual
or invalid inputs. This helps reveal edge-case bugs that
would likely go unnoticed in traditional testing. Fuzzing is
fast, repeatable, and highly effective at catching problems
early.

What is Driver Fuzzing?

Fuzzing is an automated testing technique that feeds invalid
or random data to a program and observes its behavior for
crashes or memory violations.

Driver fuzzing targets operating system drivers, critical code
that runs in kernel space. Bugs here can lead to major
security breaches.

Why Fuzz Drivers?

Drivers handle inputs from devices and user processes. A
malformed ioctl request or unexpected USB input can
bypass error checks in complex validation logic. Fuzzing
exposes these corner cases before they become exploited.

Categories of Driver Fuzzing

Driver fuzzing falls into multiple categories depending on
the approach. Mutation-based fuzzers take existing valid
inputs and slightly alter them to trigger unusual code paths.

Generation-based fuzzers create structured inputs from
scratch using known protocols or file formats.

Mutation-based vs. Generation-based

o Mutation-based fuzzers modify valid inputs for minor
variations.

o Generation-based fuzzers build structured inputs from
scratch.

Both approaches are used in driver fuzzers, depending on
whether input formats (like USB packets or ioctl structures)
are known.

White-grey-black-box Techniques
e White-box fuzzers use source code and symbolic
execution.
e Grey-box fuzzers rely on coverage feedback (e.g., KCOV).
¢ Black-box fuzzers run without code visibility.
Kernel and driver fuzzing usually uses grey-box or white-box
approaches to guide input generation and improve
efficiency.

Leading Driver Fuzzing Tools

Each tool listed below has specific use cases, from Linux
kernel modules to Windows IOCTL fuzzing. Some tools
support symbolic execution, while others rely on emulation
or runtime feedback.

1. Syzkaller

Syzkaller is a robust kernel fuzzer for Linux. It uses coverage
feedback (via KCOV) and integrates sanitizers to catch
memory issues. Security teams rely on it for high-volume
fuzzing of Linux syscalls and drivers.

2. OneFuzz

Microsoft's OneFuzz is an ensemble fuzzing as a service
platform supporting Windows and Linux. It automates build,
crash triage, and debugging. While not driver-specific,
Windows kernel code is fuzzed using this tool to uncover
driver flaws.

3. IOCTLbf

IOCTLDbf is a proof-of-concept tool for Windows drivers. It
scans ioctl codes and performs generation-based fuzzing,
even when no real applications use those ioctls.

4, difuze

Developed by the UCSB Seclab, difuze uses LLVM-based
static analysis to recover driver interfaces and manage
fuzzed inputs. It automates both interface discovery and
fuzzing, targeting Linux kernel modules.

https://slava-moskvin.medium.com/fuzzing-the-kernel-with-syzkaller-part-1-setting-up-on-mac-and-crashing-a-vulnerable-driver-b2a3949ea575
https://slava-moskvin.medium.com/fuzzing-the-kernel-with-syzkaller-part-1-setting-up-on-mac-and-crashing-a-vulnerable-driver-b2a3949ea575
https://github.com/microsoft/onefuzz
https://github.com/microsoft/onefuzz
https://github.com/koutto/ioctlbf
https://www.difuze.com/en/
https://www.fuzzingbook.org/html/MutationFuzzer.html
https://www.sciencedirect.com/science/article/pii/S0167404823000883

4 Driver Fuzzing 101: Modern Tools to Catch Bugs Before Hackers Do

5. DEVFUzZz

DEVFUZZ builds device models for drivers using symbolic
execution. It then guides fuzzers without requiring physical
hardware. Tested on Linux, FreeBSD, and Windows, it
uncovered millions of code paths and dozens of
vulnerabilities.

6. USBFuzz

USBFuzz emulates USB devices and feeds data to host
drivers under test. Its modular design supports multiple
platforms, making it ideal for fuzzing driver interfaces that
depend on USB devices.

7. Agamotto

Agamotto boosts kernel fuzzing performance using VM
checkpointing. It speeds up state restoration scenarios,
enhancing fuzzing throughput for USB and PCI drivers.

8. SyzParam

SyzParam is a 2025 breakthrough. It dynamically extracts
and mutates kernel module parameters, improving code
coverage by over 30% and revealing dozens of new bugs.

Supporting Tools in Fuzzing

Sanitizers

Sanitizers detect memory errors during fuzzing.
KernelAddressSanitizer (KASan) works in Linux and Windows
to catch out-of-bounds and use-after-free bugs.

AFL and AFL++
AFL is a genetic algorithm-based fuzzer. It's foundational,

and its forks (like AFL++) are used with syscall or driver fuzzers
to optimize mutation performance.

Best Practices in Driver Fuzzing

Effective driver fuzzing requires more than just pointing tools
at a target. Well-structured practices help reveal more bugs,
reduce noise, and improve reproducibility.

1. Automate Interface Discovery

Use tools like difuze or IOCTLbf to scan driver code or
binaries and extract supported ioctl codes and structures.
Auto-discovery ensures you cover more input paths than
manual enumeration. When interfaces change, repeat
discovery to stay current.

2. Use Sanitizers and Coverage Feedback

Compile drivers with KASan, UBSan, and KCOV. These
sanitizers reveal memory and undefined behavior errors,
while coverage guidance steers fuzzers to unexplored code
paths. For example, Syzkaller's integration with KCOV is key
to its effectiveness.

3. Leverage Emulation, VM Checkpointing, and

Device-free Fuzzing

Use QEMU or TUN/TAP for driver execution environments.
Tools like USBFuzz and Agamotto speed fuzz cycles by
restoring VM snapshot states instead of rebooting.

Semantic-driven tools like DR.FUZZ enable fuzzing without
actual hardware, dramatically expanding target coverage.

4. Incorporate Runtime Parameters and
Structured Initialization

Introducing runtime parameters via SyzParam improves
reach into complex code paths. Tools should extract module
parameters and mutate them intelligently.

Additionally, maintain valid driver initialization using
pseudo-syscalls and literal C code to set up required states
before fuzzing begins

5. Write High-Quality Fuzz Drivers

Drivers that wrap calls, set up state, and clean resources lead
to better fuzzing results. Applying methodologies like
PromptFuzz for semi-automated generation helps ensure
structure and error-free fuzz driver code.

https://ieeexplore.ieee.org/document/10179293/
https://github.com/HexHive/USBFuzz
https://marvel.fandom.com/wiki/Agamotto_(Earth-616)
https://arxiv.org/abs/2501.10002
https://docs.kernel.org/dev-tools/kasan.html

4 Driver Fuzzing 101: Modern Tools to Catch Bugs Before Hackers Do

6. Run Multiple, Time-Bound Trials

Fuzzing can vary due to randomness. Research shows
running several trials (e.g., 3x24 hours) yields more reliable
bug discovery and performance metrics. Allocate fixed
windows (overnight, weekends) to balance test coverage
with development flow.

7. Use Error-State and Fault-Injection Feedback
Incorporate coverage-guided fault injection to explore error
handling paths. Tools like FIZZER identify static failure sites
and fuzz error sequences to hit deeper code conditions.

8. Automate Crash Triage and Management

Use crash deduplication and automated triage tools (e.g.,
OneFuzz, OSS-Fuzz pipelines) to assess severity, reproduce
reliably, and integrate fixes into defect trackers or Cl systems

Typical Fuzzing Workflow

Here is a structured workflow to catch driver bugs early:

1. Setup test environment (VM or test machine).

2. Discover Interfaces with tools like difuze or IOCTLbf.

3. Generate Inputs using Syzkaller, DEVFUZZ, USBFuzz.

4. Instrument Sanitizers during build.

5. Fuzz at Scale, utilizing Agamotto checkpointing for
efficiency.

6. Triage crashes via OneFuzz or custom scripts.

7. Report and Patch validation issues before merging driver
updates.

10

4 Driver Fuzzing 101: Modern Tools to Catch Bugs Before Hackers Do

Common Risks and How Fuzz Tools Mitigate Them
Driver bugs can lead to memory corruption, denial-of-service, or even privilege escalation. Fuzzing tools mitigate

these risks by continuously stress-testing the code under edge conditions.

Risk Type

Example Threat

Mitigation Tool/Method

Memory corruption

Buffer overflow in ioctl

KASan + Syzkaller_

Unsupported IOCTL codes

Unhandled ioctl leads to
crash

IOCTLbf

Hardware edge cases

Rare USB packet structure

USBFuzz emulation

Deep driver paths

Complex init logic using
MMIO/PCI

DEVFUZZ symbolic execution
+ fuzzing

Stateful behavior

Module parameters set at
runtime

SyzParam parameter
coverage

Slow fuzz cycles

Long init times for each case

Agamotto checkpoint
technique

To Conclude

Driver fuzzing is a much-needed defense layer. Tools like Syzkaller, IOCTLbf, difuze, DEVFUZZ, USBFuzz, Agamotto, and

SyzParam allow teams to find kernel-level bugs early.

Supporting frameworks such as OneFuzz and sanitizers improve crash finding and triage. Implementing a systematic fuzzing

pipeline helps prevent vulnerabilities from entering production systems.

11

https://www3.cs.stonybrook.edu/~dongyoon/papers/SP-23-DevFuzz.pdf?utm_source=chatgpt.com

5 Unwinding Kernel Stack Traces in Obfuscated Driver Environments

Classical stack unwinding always breaks when kernel drivers
are heavily obfuscated or use new packing and hiding
mechanisms, as they can. It is not just the lack of symbols:
interrupted unwind metadata, corrupted frame contexts,
non-standard and non-standard trap handlers, and control
flow.

This article takes a closer look at the mechanics and reliable

techniques of recuperating call chains even when regular
unwind formats do not work.

Why Obfuscation Breaks Stack Unwinding?

Kernel-mode driver obfuscation applications are uncommon,

though existent, particularly in special IP-protection or
rootkit applications. Standard stack tracing using frame
pointers, ORC tables, or DWARF cannot work when code is
packed, that is, generated dynamically, or does not have
typical prologue/epilogue conventions.

The documentation of Microsoft Kernel-mode Hardware-
enforced Stack Protection notes the possibility that drivers
written with control-flow obfuscation are incompatible with
shadow-stack enforcement, making it clear that these kinds
of transformations make traceability impossible.

Frame Pointers, ORC, and When They Stall
Most programs that run on Linux use frame pointers or ORC
unwind tables to unwind. However, the mechanism is less
reliable when obfuscated or compiled away frame pointers.

This can be observed in the very documentation of the
kernel itself, which warns that an architecture cannot accept
unreliable code paths, i.e., where memory operations are out
of control, e.g., trampolines, or foreign code such as eBPF:
what obfuscation does: obscures or eliminates stack-safe
areas.

On the same note, ORC provides assistance when the
module respects compiler-generated unwind metadata.
However, a corrupt packer can discard or corrupt those
tables completely.

Hypervisor-based Introspection:

Reversing Memory Assumptions

A single direction seems to be one of the brightest
questionings: The Reversing Machine (TRM), a hypervisor-
based memory introspection system. TRM can rebuild
complete memory maps of the kernel and modules during
execution, track both kernel/user transitions, and rebuild
structures and execution flows within obfuscated
environments.

According to its designers, it reduces by 75 % the manual
reverse-engineering time of obfuscated kernel modules.

Unlike stack unwinding, this method completely avoids
unwinding because it reconstructs the execution context
based on the raw memory patterns and control-flow
transitions.

Dynamic Profiling of Kernel Events

It basically provides the possibility to use kernel telemetry
and ETW (Event Tracing for Windows) to take runtime call-
stack samples, e.g., even in case of their obfuscation, without
symbols or frame layouts. In their Elastic 8.11 release, Elastic
Security Labs added more support to ETW in the kernel,
where they record in-memory call stacks to find evasive
behavior.

Why is this useful? Although one may obfuscate the
functions, the context of the driver callback and dispatch
routines is usually the same across programs, and it is
possible to cluster and trend patterns within them.

Detecting Invalid Unwinds and Stack

Corruption

When an illegal boundary of the stack pointer is reached
other than via corrupted frames or bad stack pointers (a
frequent condition under a corrupted driver or kernel in
general, or obfuscation in particular), the driver may crash
with bug check UNWIND_ON_INVALID_STACK (Ox1AB).

Crash dumping with this bug check flag will indicate where
unwind failed, and show the limits of valid and invalid stack
states.

12

https://arxiv.org/abs/2405.00298
https://www.elastic.co/security-labs/doubling-down-etw-callstacks
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/bug-check-0x1ab-unwind-on-invalid-stack
https://learn.microsoft.com/en-us/windows-server/security/kernel-mode-hardware-stack-protection

Techniques to Reassemble Traces in Practice

1. Pre-warm trace points in safe code paths

Before the obfuscated part, lightweight instrumentation is
inserted at known points of kernel entry or kernel exit. These
serve as anchor frames- even if you lose some deeper in, you
can use the anchors and assemble call slices outward.

2. Use hypervisor memory snapshotting

The hypervisor pauses or suspends the VM, captures physical
memory pages, particularly those of the driver module, and
exposes them through LibVMI's shared memory interface to
the introspection application.

That application then analyzes instruction boundaries,
cross-mode transitions, and call addresses. By applying
memory-access and control-flow heuristics in conjunction
with driver base address info, it reconstructs an approximate
call sequence from obfuscated modules, even without
conventional unwind metadata.

3. Heuristic-based return address hunting

Return addresses will generally push onto the stack in a
predictable format, even without the frame pointers. You
may also scan stack memory to seek likely return addresses
within the driver's virtual address window and utilize these
as unwind hints. Merge with control-flow graphs that are
statically extracted from unpacked code.

4, ETW / ETW-like callback capture

In Windows, call register kernel notification callbacks (e.g.,
PsSetCreateProcessNotifyRoutineEx, ObRegisterCallbacks),
which EDR/AV drivers usually use to record entry/exit of
some important routines. They all represent practical
landmarks that assist in confining and checking the restored
stack frames.

Future Directions

Future research highlights challenges like continuous KASLR
and runtime re-randomization, as demonstrated by projects
like Adelie, which make static mapping and return-address
heuristics increasingly unreliable.

Bottom Line

Unwinding kernel stack traces in obfuscated drivers
demands more than static debugging. Traditional methods
fall short with KASLR, shadow stacks, and driver isolation.

Techniques like memory introspection, ETW tracing, and
return address heuristics are now essential. It is becoming
the rule and not the exception. Adaptive, context-aware
unwinding is not a choice; it is a necessity for researchers
and security engineers to be able to keep up with the
constantly changing protections and ever more obscured
execution paths in the kernel.

13

https://arxiv.org/abs/2201.08378
https://www.cobaltstrike.com/blog/behind-the-mask-spoofing-call-stacks-dynamically-with-timers
https://secret.club/2025/06/02/hypervisors-for-memory-introspection-and-reverse-engineering.html
https://www.elastic.co/blog/universal-profiling-frame-pointers-symbols-ebpf
https://labs.withsecure.com/publications/spoofing-call-stacks-to-confuse-edrs

6 “Secure by Design” Policy Gathers Momentum in the UK

The UK government is now requiring all central departments
and arm'’s length bodies to adopt the Secure by Design
policy. Introduced in May 2025, this move sets a new
baseline for how digital systems must be built across the
public sector.

The policy applies to system delivery teams, digital leaders,
developers, and commercial officers. It demands early
security planning, continuous risk assessment, and full
compliance with the National Cyber Security Centre’'s Cyber
Assessment Framework (CAF).

Defence Took the First Step

The Ministry of Defence had already adopted Secure by
Design before the rest of government followed. It published
a "problem book" describing technical debt, legacy
constraints, and supplier challenges. The Defence Digital
team then formalised seven Secure by Design principles.

These include clearly defining the system context, managing
risk across the lifecycle, and creating audit trails that can be
tested by third parties. The ministry expects defence
suppliers to build these into their delivery models.

Code of Practice for Software Vendors

In March 2025, the UK government released a Software
Security Code of Practice. It lays out 14 principles that
software vendors must follow when providing systems to the
public sector.

The principles cover:
e Secure development environments
o Testing for known vulnerabilities
¢ Managing third-party dependencies
¢ Incident response planning

The code aims to bring vendor standards in line with Secure
by Design expectations.

Parliament and Watchdogs Back the Push
The Public Accounts Committee has called for stronger
cyber resilience in the public sector. In its latest report, it said
too many departments rely on outdated defences and patch
fixes. The committee backed Secure by Design as a long-
term strategy to improve system safety.

The National Audit Office has raised similar concerns. It
found that legacy IT and fragmented oversight make
systems more vulnerable. Both groups see the new policy as
a necessary shift.

New Laws Add Pressure

Secure by Design fits into a broader set of legal reforms. The

Cyber Security and Resilience Bill, introduced in 2024, is now
moving through Parliament. It will bring new reporting rules
and stronger oversight of cyber incidents.

The Online Safety Act, which takes full effect on 25 July 2025,
targets digital platforms. It forces companies to build user
protections into their systems at the design stage. Failure to
comply can lead to enforcement action.

Implementation Support and Tools

The Central Digital and Data Office (CDDO) has published
step-by-step support for departments. It encourages teams
to form delivery groups with both technical and policy staff.
A readiness checklist and transition planning guide are
available.

Weekly support calls are open to teams across government.
These sessions help departments apply Secure by Design in
procurement, cloud deployments, and agile software
projects.

Barriers Slow Down Rollout

Some departments are struggling to keep pace. Reports
show that security is still treated as an afterthought in many
public services. Many teams lack the technical capacity to
design secure systems from the ground up.

The Ministry of Defence has raised other problems. Export
controls make it hard to share technical designs with
suppliers. Some systems also depend on old software that
cannot easily be rebuilt.

14

https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement
https://www.gov.uk/government/collections/online-safety-act
https://www.gov.uk/government/organisations/central-digital-and-data-office
https://www.ncsc.gov.uk/collection/cyber-assessment-framework/introduction-to-caf
https://www.ncsc.gov.uk/collection/cyber-assessment-framework/introduction-to-caf
https://www.gov.uk/government/publications/software-security-code-of-practice/software-security-code-of-practice
https://www.gov.uk/government/publications/software-security-code-of-practice/software-security-code-of-practice

6 “Secure by Design” Policy Gathers Momentum in the UK

Software Suppliers Face Pressure

Private vendors now face pressure to meet Secure by Design
and code of practice standards. Larger firms are updating
internal workflows and hiring security-focused engineers.
Smaller vendors face resource gaps.

Some suppliers say they need more clarity from government
buyers. Others warn that the cost of meeting new standards
could put pressure on pricing and delivery timelines.

Security Now Starts with Design

Secure by Design has become a formal part of how the UK
government expects systems to be built. It no longer treats
security as a last step. Instead, it requires developers and
policy teams to plan for it at the start of every project.

The approach now influences procurement, regulation, and
delivery. Whether in digital services or defence systems,
teams are expected to follow the same rules. Departments
that do not comply may face audits or intervention. Vendors
that fall short may be excluded from future contracts.

The rules are now active. The deadlines are near. The priority
is clear.

15

