
STUXNET THEN & NOW

NSO GROUP & PEGASUS

Cybersecurity 2025

October 2025/ Volume 01

BRING‑YOUR‑OWN‑VULNERABLE‑
DRIVER (BYOVD

FRONT /> CODE
 October 2025

C Y B E R S E C U R I T Y

SYSTEM SECURITY EVOLUTION & ADVANCED EXPLOIT

DRIVER FUZZING 101

“SECURE BY DESIGN” POLICY
GATHERS MOMENTUM IN THE UK

UNWINDING KERNEL STACK TRACES

Stuxnet (uncovered in 2010) was a watershed moment: it

was the first known malware designed to cause physical

destruction. This highly sophisticated worm infiltrated Iran’s

Natanz nuclear plant, believed to be written by nation-state

actors, and directly sabotaged the industrial control systems

there. Once inside, Stuxnet searched for Siemens industrial

control software (used to run uranium centrifuges) and

issued malicious commands. Stuxnet secretly

commandeered the plant’s Siemens PLC controllers and

subtly tweaked centrifuge rotation speeds to induce

mechanical failure (malwarebytes.com). While it was

running, Stuxnet disguised its activities by replaying fake

“normal” sensor readings to operators, so nobody realized the

turbines were being pushed to the breaking point. In the

words of cybersecurity analysts, Stuxnet was “the most

aggressive cyber-physical attack ever documented”

(malwarebytes.com). It proved that malware could carry a

literal “warhead” using code to bend real-world physics.

The legacy of Stuxnet is everywhere in modern cybersecurity.

Following its debut, similar attacks on industrial systems

began to emerge. For instance, in 2016 a malware known as

“CrashOverride/Industroyer” was discovered, capable of

issuing shutdown commands to power grid breakers.

Investigators say this tool was used to briefly black out parts

of the Ukrainian electrical grid in December 2016

(reuters.com). Likewise, in 2017 the “Triton (aka Trisis)”

malware hacked into safety controls of a Saudi Arabian

petrochemical plant. Triton’s breach of industrial safety

systems was a first-of-its-kind “watershed” event: hackers

could potentially have shut down the plant by deceiving

safety controllers (the attackers’ tools “could be fooled to

indicate that everything is okay” even while the plant was

being sabotaged) (reuters.com). Fortunately in that case the

malware prematurely shut itself down, so disaster was

averted, but the lesson was chilling.

1 Stuxnet Then & Now: Malware That Broke New Ground

1

More recently, even “regular” ransomware gangs have

targeted critical infrastructure. A stark example is the

Colonial Pipeline attack in May 2021. Hackers seized control

of the U.S. East Coast’s largest fuel pipeline, forcing it to shut

down entirely for nearly a week. Colonial Pipeline paid a $4.4

million ransom to regain access, but not before the outage

caused huge gasoline shortages in the Southeast

(en.wikipedia.org). This incident underlined that IT-centric

threats can have massive physical consequences when

energy and utility networks get hit.

Despite all this, experts warn that many critical systems

remain just as exposed as they were 15 years ago. At a 2025

U.S. House hearing, veteran ICS security analyst Joe Weiss

bluntly observed that “critical infrastructures continue to be

susceptible to Stuxnet-type attacks” (controlglobal.com). In

other words, the vulnerabilities that Stuxnet exploited,

trusting field sensors, unsegmented OT (Operational

Technology) networks, obscure protocols, have not been fully

fixed. Many industrial control systems still lack modern

protections or even awareness of these threats. As Weiss

noted, sophisticated hacks often “look like equipment

malfunctions”, so incidents can slip by undetected if

operators assume it’s just a sensor glitch (controlglobal.com).

This remains a dangerous blind spot: an attack on a turbine

might be mistaken for a hardware failure unless process-

level monitoring is in place.

https://www.malwarebytes.com/blog/news/2013/11/stuxnet-new-light-through-old-windows#:~:text=Stuxnet%20was%20first%20uncovered%20in,engineers%20crazy%20looking%20for%20causes
https://www.malwarebytes.com/blog/news/2013/11/stuxnet-new-light-through-old-windows#:~:text=Stuxnet%20counts%20as%20the%20most,Iran%2C%20thanks%20to%20unwitting%20contractors
https://www.reuters.com/article/cyber-attack-utilities/security-firms-warn-of-newcyber-threat-to-electric-grid-idUSL1N1J61JK/#:~:text=Analysis%20of%20the%20malware%2C%20known,infrastructure%20security%20firm%20Dragos%20Inc
https://www.reuters.com/article/technology/hackers-halt-plant-operations-in-watershed-cyber-attack-idUSKBN1E8271/#:~:text=Compromising%20a%20safety%20system%20could,halting%20destructive%20attacks%2C%20they%20said
https://en.wikipedia.org/wiki/Colonial_Pipeline_ransomware_attack#:~:text=On%20May%207%2C%202021%2C%20Colonial,68%20to%20restore%20the
https://www.controlglobal.com/blogs/unfettered/blog/55305476/stuxnet-cyberattack-15-years-later-the-unlearned-lessons#:~:text=Critical%20infrastructures%20continue%20to%20be,security%20issues
https://www.controlglobal.com/blogs/unfettered/blog/55305476/stuxnet-cyberattack-15-years-later-the-unlearned-lessons#:~:text=happened%20in%20defending%20critical%20infrastructures,related

The good news is that awareness is finally translating into

defense. Industry guidelines (like NIST’s ICS security

framework) now emphasize isolating OT networks from the

Internet, implementing strict access controls, and closely

monitoring physical processes, not just network traffic.

Operators are urged to keep detailed inventories of sensors

and controllers, so anomalies can not hide in the weeds.

Lessons from Stuxnet and its successors have led to new

tools that watch the “physical layer” of systems: for example,

alarms if a centrifuge spins beyond safe limits. Public-private

threat-sharing forums (e.g. ICS-CERT) exist so that operators

learn quickly about new ICS malware variants. In short,

defenders are moving toward a holistic view that spans

software and hardware.

2

Key Takeaways: Stuxnet was the first malware “cyber-

weapon” that physically damaged equipment

(malwarebytes.com). In the years since, new ICS-focused

malware (Industroyer, Triton, etc.) have struck utilities and

plants (reuters.com). Experts now emphasize that many

industrial systems are still vulnerable, lacking simple

protections and wrongly treated like ordinary IT networks

(controlglobal.com). Defenses must span networks and

physical processes (segmentation, sensor checks, ICS-aware

monitoring). In short, Stuxnet taught us that code can have a

physical “warhead,” and protecting critical infrastructure

means learning to think like a defender of both software and

hardware (malwarebytes.com).

Industrial control room

In summary, Stuxnet broke unprecedented ground by

showing cyber weapons can cause real-world damage. Its

story reshaped cybersecurity strategy: no longer is blocking

Internet intrusions enough. We must also protect the tiny

devices and control loops that actually run our infrastructure.

Fifteen years later, Stuxnet’s impact is still unfolding, a

reminder that defending against cyber-physical attacks is an

ongoing mission (controlglobal.com; reuters.com).

https://www.malwarebytes.com/blog/news/2013/11/stuxnet-new-light-through-old-windows#:~:text=Stuxnet%20was%20first%20uncovered%20in,engineers%20crazy%20looking%20for%20causes
https://www.reuters.com/article/cyber-attack-utilities/security-firms-warn-of-newcyber-threat-to-electric-grid-idUSL1N1J61JK/#:~:text=Analysis%20of%20the%20malware%2C%20known,infrastructure%20security%20firm%20Dragos%20Inc
https://www.controlglobal.com/blogs/unfettered/blog/55305476/stuxnet-cyberattack-15-years-later-the-unlearned-lessons#:~:text=Critical%20infrastructures%20continue%20to%20be,security%20issues
https://www.malwarebytes.com/blog/news/2013/11/stuxnet-new-light-through-old-windows#:~:text=Once%20active%2C%20it%20went%20to,screens%20while%20doing%20its%20thing
https://www.controlglobal.com/blogs/unfettered/blog/55305476/stuxnet-cyberattack-15-years-later-the-unlearned-lessons#:~:text=Critical%20infrastructures%20continue%20to%20be,security%20issues
https://www.reuters.com/article/technology/hackers-halt-plant-operations-in-watershed-cyber-attack-idUSKBN1E8271/#:~:text=Compromising%20a%20safety%20system%20could,halting%20destructive%20attacks%2C%20they%20said

Pegasus is NSO Group’s notorious spyware that can stealthily

hijack smartphones using zero-click exploits; no user action

needed; and harvest virtually everything on the device: texts,

calls, location, camera, microphone, you name it

(amnesty.org). NSO Group is an Israeli cybersecurity firm that

develops surveillance tools, primarily marketed to

governments for law enforcement and national security

purposes. Originally sold to fight terrorism and crime,

forensic reports show it was widely abused by governments.

Investigations revealed that state clients around the globe,

from Saudi Arabia and Mexico to Poland and El Salvador

were using Pegasus to spy on journalists, activists and

dissidents (reuters.com; reuters.com). In fact, the Pegasus

Project (a 2021 media investigation,involved collaboration

among 17 media organizations, led by Forbidden Stories, to

analyze a leaked list of potential surveillance targets,

exposing the scale of Pegasus misuse) exposed a leaked list

of over 50,000 phone numbers including world leaders and

reporters, across 50+ countries as potential surveillance

targets (amnesty.org). That scandal prompted global

outrage. And Pegasus is not just historical news: Amnesty

International’s tech lab recently confirmed that two

prominent Indian journalists were hacked with Pegasus in

late 2023 (amnesty.org), showing this invasive tool is very

much alive and being used today.

2 NSO Group & Pegasus: Unraveling the Spyware Scandal

3

Detecting and preventing Pegasus spyware is challenging

due to its advanced nature and the use of zero-click exploits.

Traditional antivirus software may not be effective against

such sophisticated threats. However, specific tools like the

Mobile Verification Toolkit (MVT) developed by Amnesty

International can analyze mobile devices for indicators of

compromise related to Pegasus. Additionally, Apple has

introduced Lockdown mode in iOS 16 to reduce the attack

surface, making it harder for spyware to exploit

vulnerabilities. Users should keep their devices updated, use

secure communication channels, and be cautious with app

permissions to minimize risks (us.norton.com).

Legal Backlash and Accountability: After years of secretive

abuse, NSO is finally under fire. In May 2025, Meta

(WhatsApp’s parent) won a $168 million jury verdict against

NSO (reuters.com). U.S. courts found NSO had secretly

exploited a WhatsApp bug to install Pegasus on users’

phones. The verdict awarded about $444K in compensatory

damages plus $167M in punitive fines (reuters.com). Reuters

reports that NSO is now “a poster child for the surveillance

industry and their abuses and impunity,” long arguing its

tools target only terrorists and pedophiles while evidence

showed its software was tied to widespread spying

(reuters.com). Trial testimony even revealed NSO had a 140-

person R&D team with a $50M budget for hacking phones

and recorded government customers such as Uzbekistan,

Saudi Arabia and Mexico (reuters.com). Apple has sued NSO

too (in late 2021) for similar allegations that U.S. iPhones

were breached by Pegasus (reuters.com). Apple’s lawsuit

seeks to hold NSO accountable for targeting iPhone users

and aims to set a precedent for restricting spyware misuse.

These landmark cases signal that cyber-spyware vendors can

be held legally accountable for abuses.

A conceptual diagram of a Pegasus spyware attack

https://www.amnesty.org/en/latest/news/2023/12/india-damning-new-forensic-investigation-reveals-repeated-use-of-pegasus-spyware-to-target-high-profile-journalists/#:~:text=The%20Security%20Lab%20recovered%20evidence,version%20available%20at%20the%20time
https://www.reuters.com/technology/pegasus-phone-spyware-used-target-30-thai-activists-cyber-watchdogs-say-2022-07-18/#:~:text=Pegasus%20has%20been%20used%20by,trade%20blacklist
https://www.reuters.com/sustainability/society-equity/court-clash-between-meta-nso-ends-168-million-defeat-spyware-firm-2025-05-06/#:~:text=NSO%2C%20an%20Israeli%20firm%20that,108%2C%20and%20El%20Salvador
https://forbiddenstories.org/
https://www.amnesty.org/en/latest/press-release/2021/07/the-pegasus-project/#:~:text=NSO%20Group%E2%80%99s%20spyware%20has%20been,journalists%2C%20including%20Jamal%20Khashoggi%E2%80%99s%20family
https://www.amnesty.org/en/latest/news/2023/12/india-damning-new-forensic-investigation-reveals-repeated-use-of-pegasus-spyware-to-target-high-profile-journalists/#:~:text=Forensic%20investigations%20by%20Amnesty%20International%E2%80%99s,case%20occurring%20in%20October%202023
https://us.norton.com/blog/emerging-threats/pegasus-spyware
https://www.reuters.com/sustainability/society-equity/court-clash-between-meta-nso-ends-168-million-defeat-spyware-firm-2025-05-06/#:~:text=WASHINGTON%2C%20May%206%20%28Reuters%29%20,world%27s%20best%20known%20spyware%20company
https://www.reuters.com/sustainability/society-equity/court-clash-between-meta-nso-ends-168-million-defeat-spyware-firm-2025-05-06/#:~:text=WASHINGTON%2C%20May%206%20%28Reuters%29%20,world%27s%20best%20known%20spyware%20company
https://www.reuters.com/sustainability/society-equity/court-clash-between-meta-nso-ends-168-million-defeat-spyware-firm-2025-05-06/#:~:text=NSO%2C%20an%20Israeli%20firm%20that,108%2C%20and%20El%20Salvador
https://www.reuters.com/sustainability/society-equity/court-clash-between-meta-nso-ends-168-million-defeat-spyware-firm-2025-05-06/#:~:text=The%20court%20heard%20about%20NSO%27s,NSO%27s%20closely%20guarded%20client%20list
https://www.reuters.com/technology/apple-files-lawsuit-against-nso-group-2021-11-23/#:~:text=Nov%2023%20%28Reuters%29%20,users%20with%20its%20Pegasus%20spyware

4

The commercialization of advanced surveillance tools like

Pegasus has created a lucrative market, with governments

paying between $3 million and $30 million for access to such

capabilities, as revealed in trial testimony. This high price

reflects the tool's sophistication and comprehensive

surveillance features. However, the financial incentives also

encourage the proliferation of these technologies, potentially

leading to increased misuse and human rights violations.

Consequently, there is an urgent need for stricter regulations

and oversight to ensure that surveillance tools are used

ethically and in accordance with legal standards

(lookout.com).

In summary, Pegasus taught a hard lesson: unrestrained

digital surveillance erodes trust. The NSO/WhatsApp trial and

international scrutiny show the tide is turning toward

accountability. Moving forward, To prevent future abuses

both governments and private tech companies will need

clear, enforceable rules for any hacking tools, or face losing

public trust and legal battles.

Pegasus spyware

Policy and Regulation: The Pegasus saga has spurred swift

policy action. The U.S. Commerce Dept. formally blacklisted

NSO in 2021, banning U.S. exports to NSO as punishment for

its “malicious” spyware sales to foreign governments

(commerce.gov). In Europe, lawmakers have opened

inquiries into Pegasus use, the EU Parliament even set up a

special committee to investigate reports that Pegasus and

similar spyware were used against EU citizens and leaders

(politico.eu). Meanwhile NGOs are demanding stricter

controls. Human Rights Watch warns that governments

“should urgently suspend sales and transfers” of such

spyware until proper human-rights-protecting oversight is in

place (hrw.org). Amnesty International and other groups

have similarly called for export bans or licenses revocation,

emphasizing that unchecked surveillance tools violate

human rights. The bottom line: many experts now say our

laws and norms have not kept up with these intrusions. As

one researcher put it, Pegasus reminds us that code can

have physical “warheads,” so without new ethical rules and

regulations our democracies and privacy are at risk (hrw.org;

commerce.gov).

https://www.lookout.com/blog/protect-against-pegasus-spyware
https://www.commerce.gov/news/press-releases/2021/11/commerce-adds-nso-group-and-other-foreign-companies-entity-list#:~:text=NSO%20Group%20and%20Candiru%20,based%20international%20order
https://www.politico.eu/article/pegasus-use-5-eu-countries-nso-group-admit/#:~:text=EU%20lawmakers%20launched%20the%20inquiry,91%C2%A0in%20Spain%2C%20Poland%20and%20Hungary
https://www.hrw.org/news/2021/07/30/unchecked-spyware-industry-enables-abuses#:~:text=%E2%80%9CDisturbing%20reports%20about%20Pegasus%20again,sales%20and%20transfers%20of%20surveillance
https://www.hrw.org/news/2021/07/30/unchecked-spyware-industry-enables-abuses#:~:text=%E2%80%9CDisturbing%20reports%20about%20Pegasus%20again,sales%20and%20transfers%20of%20surveillance
https://www.commerce.gov/news/press-releases/2021/11/commerce-adds-nso-group-and-other-foreign-companies-entity-list#:~:text=NSO%20Group%20and%20Candiru%20,based%20international%20order

3 Bring‑Your‑Own‑Vulnerable‑Driver (BYOVD): Hijacking Legitimate Binaries

5

Kernel-level access
Once loaded, the driver runs in kernel mode. It can escalate

privileges, disable security features, patch MSRs, or overwrite

raw disk sectors.

How do attackers exploit vulnerable drivers?
BYOVD attacks follow a clear pattern:

1. Drop a signed, vulnerable driver – often reused from

legitimate software.

2. Load the driver – using admin rights or service creation.

3. Exploit memory or control flaws – for privilege escalation

or disabling security services.

4. Hijack trusted binaries – such as EDR components or

Windows processes.

5. Persist or drift laterally – by planting rootkits, dropping

ransomware, or mining cryptominer.

BYOVD Attacks: Real World Examples
Many high-profile campaigns have leveraged BYOVD tactics.

These include ransomware groups and nation-state actors

who exploit the technique for stealth and persistence.

RobbinHood (Gigabyte driver)

In 2019, RobbinHood ransomware abused the gdrv.sys driver

from Gigabyte. It exploited CVE‑2018‑19320 to disable Driver

Signature Enforcement, then installed its own malicious

driver.

BlackByte (MSI Afterburner)

BlackByte used RTCore64.sys, the MSI Afterburner driver

(CVE‑2019‑16098), to terminate over 1,000 security‑related

processes.

Lazarus (Dell DBUtil)

North Korea’s Lazarus APT abused dbutil_2_3.sys (Dell’s

firmware driver, CVE‑2021‑21551) in 2021. The driver loaded a

rootkit and disabled ETW, filesystem, registry and process

tracing.

Bring‑Your‑Own‑Vulnerable‑Driver (BYOVD): Hijacking
Legitimate Binaries
Why are BYOVD Attacks Effective?
Trusted binaries are whitelisted
How do attackers exploit vulnerable drivers?
BYOVD Attacks: Real World Examples
RobbinHood (Gigabyte driver)
Lazarus (Dell DBUtil)
How does this Hijack Legitimate Binaries?
Terminate or alter security processes
Load unsigned code into kernel
Bypass Code Integrity
Detection and Mitigation Strategies
1. Driver whitelisting and auditing
2. Patch or block vulnerable drivers
3. Harden driver loading
4. Monitor kernel telemetry
5. Use behavior-based detection
6. Contain suspected compromises quickly
To Conclude

Bring‑Your‑Own‑Vulnerable‑Driver (BYOVD) is a technique

where attackers drop and load a trusted but vulnerable,

signed kernel driver into a Windows system. Since the driver

is legitimate and signed, the operating system accepts it. The

attacker then exploits the driver’s flaw to perform actions at

kernel level.

Kernel drivers run with ring‑0 privileges. That lets attackers

read or write memory, escalate to SYSTEM, disable

protections, or load unsigned code. This way, they hijack

trusted binaries to bypass security.

BYOVD is gaining popularity among threat actors because it

offers high stealth and low detection rates. It is different from

traditional malware because these drivers slip past most

defenses due to their signed status.

Why are BYOVD Attacks Effective?
One reason BYOVD works so well is that many organizations

rely on signature-based detection. These drivers are already

signed and trusted, making them less likely to raise red flags.

Trusted binaries are whitelisted
Signed drivers pass Windows Driver Signature Enforcement.

These binaries are often trusted by EDR and antivirus

solutions. As a result, using a vulnerable driver is more covert

than deploying malware.

https://nvd.nist.gov/vuln/detail/CVE-2018-19320
https://answers.microsoft.com/en-us/windows/forum/all/rtcore64sys-bsod-in-windows-11-with-msi/3e0c5fce-79d2-4f76-8ae8-4e17c2132c1e
https://www.rapid7.com/db/modules/exploit/windows/local/cve_2021_21551_dbutil_memmove/
https://www.linkedin.com/pulse/bring-your-own-vulnerable-driverbyovdattack-technique-ashwin-harish-p?utm_source=chatgpt.com
https://en.wikipedia.org/wiki/Protection_ring
https://cymulate.com/blog/defending-against-bring-your-own-vulnerable-driver-byovd-attacks/?utm_source=chatgpt.com

6

2. Patch or block vulnerable drivers
It is needed to monitor trusted sources like CVE databases

and hardware vendor bulletins for driver-related security

advisories.

Once a vulnerability is disclosed, either patch it immediately

or block the driver using Group Policy or endpoint protection

tools. Quick response limits the time attackers can exploit

the flaw. See how to manage known driver vulnerabilities.

3. Harden driver loading
Another strategy is to restrict who can load new drivers by

minimizing admin-level access. You can use features like

Windows Defender Application Control (WDAC) and enforce

kernel-mode code integrity policies. These tools help block

unsigned or unapproved drivers from loading during

runtime.

4. Monitor kernel telemetry
You can use tools like Windows Event Viewer, Sysmon or

other commercial telemetry platforms to log kernel-level

events.

Another thing is to set alerts for unexpected driver loads

such as unsigned or outdated ones and watch for suspicious

IOCTL behavior that could signal exploitation attempts. Also

learn how telemetry insights support real-time detection.

5. Use behavior-based detection
Signature-based solutions alone won’t catch BYOVD attacks.

Use EDR or XDR platforms with behavioral analytics to

identify anomalies like unusual driver installs or EDR agent

tampering. Monitoring patterns linked to driver execution

helps flag suspicious activity.

6. Contain suspected compromises quickly
If you suspect a BYOVD incident, isolate the device from the

network immediately to stop lateral movement. Perform

memory analysis if needed.

If the system’s kernel integrity is compromised, then a full re-

image is often the safest route. This helps to make sure that

the threat is fully removed.

RansomHub (EDRKillShifter tool)

In 2024, RansomHub launched EDRKillShifter. It loaded a

vulnerable driver via a password‑protected loader. It then

exploited and shut down EDR agents before executing

ransomware.

GHOSTENGINE (Cryptominers)

The REF4578 campaign used aswArPot.sys (Avast) and IObit’s

unlocker driver to kill EDR processes and install a

cryptominer called XMRig.

How does this Hijack Legitimate Binaries?
Hijacking occurs when vulnerable drivers are used to alter or

terminate legitimate security binaries. Attackers use kernel

privileges to tamper with system integrity.

Terminate or alter security processes
Vulnerable drivers may allow arbitrary kernel memory writes.

Attackers use these to pause or kill security process threads.

This disables protections silently.

Load unsigned code into kernel
Some drivers allow mapping of unsigned code. Attackers

exploit this to load rootkits, unsigned drivers, or alter MSRs.

Bypass Code Integrity
Drivers that manipulate MSR or IOPORT registers can disable

Code Integrity and HVCI. This pits Windows into loading

unauthorized drivers freely.

Detection and Mitigation Strategies
Blocking BYOVD requires both proactive and reactive steps.

Endpoint monitoring, driver control policies, and behavior

analytics all play a role.

1. Driver whitelisting and auditing
Keep an up-to-date whitelist of approved drivers and review

it regularly. Use configuration management tools and

endpoint monitoring to detect drivers that aren't authorized

or are no longer in use.

This allows only signed and verified drivers run on the

system. Learn more about maintaining endpoint security

through driver validation practices.

https://www.trendmicro.com/en_us/research/24/i/how-ransomhub-ransomware-uses-edrkillshifter-to-disable-edr-and-.html
https://www.darkreading.com/endpoint-security/ransomhub-rolls-out-brand-new-edr-killing-byovd-binary?utm_source=chatgpt.com
https://www.file.net/process/aswarpot.sys.html
https://thehackernews.com/2024/05/ghostengine-exploits-vulnerable-drivers.html?utm_source=chatgpt.com
https://www.crowdstrike.com/en-us/blog/falcon-prevents-vulnerable-driver-attacks-real-world-intrusion/?utm_source=chatgpt.com
https://blogs.vmware.com/security/2023/04/bring-your-own-backdoor-how-vulnerable-drivers-let-hackers-in.html?utm_source=chatgpt.com
https://www.crowdstrike.com/en-us/blog/falcon-prevents-vulnerable-driver-attacks-real-world-intrusion/?utm_source=chatgpt.com

7

To Conclude

BYOVD attacks hijack legitimate, signed drivers to achieve

kernel‑level control. They bypass WDSE and many security

tools. Attackers use them to disable protections, escalate

privileges, or load rootkits.

Organizations face significant risk from BYOVD. Frequent

vulnerabilities exist in gaming, printer, storage, and firmware

driver packages.

To defend against BYOVD, teams should enforce driver

whitelisting, timely patching, strict privilege management,

telemetry, and behavior monitoring. These steps help detect

and block driver‑based hijacks before they compromise

binaries at kernel level.

https://www.halcyon.ai/blog/understanding-byovd-attacks-and-mitigation-strategies?utm_source=chatgpt.com

4 Driver Fuzzing 101: Modern Tools to Catch Bugs Before Hackers Do

8

Both approaches are used in driver fuzzers, depending on

whether input formats (like USB packets or ioctl structures)

are known.

White‑grey‑black‑box Techniques
White‑box fuzzers use source code and symbolic

execution.

 Grey‑box fuzzers rely on coverage feedback (e.g., KCOV).

 Black‑box fuzzers run without code visibility.

Kernel and driver fuzzing usually uses grey-box or white-box

approaches to guide input generation and improve

efficiency.

Leading Driver Fuzzing Tools
Each tool listed below has specific use cases, from Linux

kernel modules to Windows IOCTL fuzzing. Some tools

support symbolic execution, while others rely on emulation

or runtime feedback.

1. Syzkaller
Syzkaller is a robust kernel fuzzer for Linux. It uses coverage

feedback (via KCOV) and integrates sanitizers to catch

memory issues. Security teams rely on it for high-volume

fuzzing of Linux syscalls and drivers.

2. OneFuzz
Microsoft’s OneFuzz is an ensemble fuzzing as a service

platform supporting Windows and Linux. It automates build,

crash triage, and debugging. While not driver-specific,

Windows kernel code is fuzzed using this tool to uncover

driver flaws.

3. IOCTLbf
IOCTLbf is a proof-of-concept tool for Windows drivers. It

scans ioctl codes and performs generation-based fuzzing,

even when no real applications use those ioctls.

4. difuze
Developed by the UCSB SecLab, difuze uses LLVM-based

static analysis to recover driver interfaces and manage

fuzzed inputs. It automates both interface discovery and

fuzzing, targeting Linux kernel modules.

Driver fuzzing is a growing technique used to identify hidden

vulnerabilities in some of the most critical parts of a system:

kernel drivers.

These drivers manage communication between the

operating system and hardware. Because they run with high

privileges, even minor bugs can lead to major consequences

like system crashes or privilege escalation.

Instead of waiting for attackers to discover these flaws,

security teams now rely on driver fuzzing to simulate unusual

or invalid inputs. This helps reveal edge-case bugs that

would likely go unnoticed in traditional testing. Fuzzing is

fast, repeatable, and highly effective at catching problems

early.

What is Driver Fuzzing?
Fuzzing is an automated testing technique that feeds invalid

or random data to a program and observes its behavior for

crashes or memory violations.

Driver fuzzing targets operating system drivers, critical code

that runs in kernel space. Bugs here can lead to major

security breaches.

Why Fuzz Drivers?
Drivers handle inputs from devices and user processes. A

malformed ioctl request or unexpected USB input can

bypass error checks in complex validation logic. Fuzzing

exposes these corner cases before they become exploited.

Categories of Driver Fuzzing
Driver fuzzing falls into multiple categories depending on

the approach. Mutation-based fuzzers take existing valid

inputs and slightly alter them to trigger unusual code paths.

Generation-based fuzzers create structured inputs from

scratch using known protocols or file formats.

Mutation‑based vs. Generation‑based
Mutation‑based fuzzers modify valid inputs for minor

variations.

Generation‑based fuzzers build structured inputs from

scratch.

https://slava-moskvin.medium.com/fuzzing-the-kernel-with-syzkaller-part-1-setting-up-on-mac-and-crashing-a-vulnerable-driver-b2a3949ea575
https://slava-moskvin.medium.com/fuzzing-the-kernel-with-syzkaller-part-1-setting-up-on-mac-and-crashing-a-vulnerable-driver-b2a3949ea575
https://github.com/microsoft/onefuzz
https://github.com/microsoft/onefuzz
https://github.com/koutto/ioctlbf
https://www.difuze.com/en/
https://www.fuzzingbook.org/html/MutationFuzzer.html
https://www.sciencedirect.com/science/article/pii/S0167404823000883

4 Driver Fuzzing 101: Modern Tools to Catch Bugs Before Hackers Do

9

Best Practices in Driver Fuzzing

Effective driver fuzzing requires more than just pointing tools

at a target. Well-structured practices help reveal more bugs,

reduce noise, and improve reproducibility.

1. Automate Interface Discovery
Use tools like difuze or IOCTLbf to scan driver code or

binaries and extract supported ioctl codes and structures.

Auto-discovery ensures you cover more input paths than

manual enumeration. When interfaces change, repeat

discovery to stay current.

2. Use Sanitizers and Coverage Feedback
Compile drivers with KASan, UBSan, and KCOV. These

sanitizers reveal memory and undefined behavior errors,

while coverage guidance steers fuzzers to unexplored code

paths. For example, Syzkaller’s integration with KCOV is key

to its effectiveness.

3. Leverage Emulation, VM Checkpointing, and

Device-free Fuzzing
Use QEMU or TUN/TAP for driver execution environments.

Tools like USBFuzz and Agamotto speed fuzz cycles by

restoring VM snapshot states instead of rebooting.

Semantic-driven tools like DR.FUZZ enable fuzzing without

actual hardware, dramatically expanding target coverage.

4. Incorporate Runtime Parameters and

Structured Initialization
Introducing runtime parameters via SyzParam improves

reach into complex code paths. Tools should extract module

parameters and mutate them intelligently.

Additionally, maintain valid driver initialization using

pseudo-syscalls and literal C code to set up required states

before fuzzing begins

5. Write High-Quality Fuzz Drivers
Drivers that wrap calls, set up state, and clean resources lead

to better fuzzing results. Applying methodologies like

PromptFuzz for semi-automated generation helps ensure

structure and error-free fuzz driver code.

5. DEVFUZZ
DEVFUZZ builds device models for drivers using symbolic

execution. It then guides fuzzers without requiring physical

hardware. Tested on Linux, FreeBSD, and Windows, it

uncovered millions of code paths and dozens of

vulnerabilities.

6. USBFuzz
USBFuzz emulates USB devices and feeds data to host

drivers under test. Its modular design supports multiple

platforms, making it ideal for fuzzing driver interfaces that

depend on USB devices.

7. Agamotto
Agamotto boosts kernel fuzzing performance using VM

checkpointing. It speeds up state restoration scenarios,

enhancing fuzzing throughput for USB and PCI drivers.

8. SyzParam
SyzParam is a 2025 breakthrough. It dynamically extracts

and mutates kernel module parameters, improving code

coverage by over 30% and revealing dozens of new bugs.

Supporting Tools in Fuzzing

Sanitizers

Sanitizers detect memory errors during fuzzing.

KernelAddressSanitizer (KASan) works in Linux and Windows

to catch out-of-bounds and use-after-free bugs.

AFL and AFL++

AFL is a genetic algorithm-based fuzzer. It's foundational,

and its forks (like AFL++) are used with syscall or driver fuzzers

to optimize mutation performance.

https://ieeexplore.ieee.org/document/10179293/
https://github.com/HexHive/USBFuzz
https://marvel.fandom.com/wiki/Agamotto_(Earth-616)
https://arxiv.org/abs/2501.10002
https://docs.kernel.org/dev-tools/kasan.html

4 Driver Fuzzing 101: Modern Tools to Catch Bugs Before Hackers Do

10

6. Run Multiple, Time‑Bound Trials
Fuzzing can vary due to randomness. Research shows

running several trials (e.g., 3x24 hours) yields more reliable

bug discovery and performance metrics. Allocate fixed

windows (overnight, weekends) to balance test coverage

with development flow.

7. Use Error‑State and Fault‑Injection Feedback
Incorporate coverage-guided fault injection to explore error

handling paths. Tools like FIZZER identify static failure sites

and fuzz error sequences to hit deeper code conditions.

8. Automate Crash Triage and Management
Use crash deduplication and automated triage tools (e.g.,

OneFuzz, OSS-Fuzz pipelines) to assess severity, reproduce

reliably, and integrate fixes into defect trackers or CI systems

Typical Fuzzing Workflow
Here is a structured workflow to catch driver bugs early:

1. Setup test environment (VM or test machine).

2. Discover Interfaces with tools like difuze or IOCTLbf.

3. Generate Inputs using Syzkaller, DEVFUZZ, USBFuzz.

4. Instrument Sanitizers during build.

5. Fuzz at Scale, utilizing Agamotto checkpointing for

efficiency.

6. Triage crashes via OneFuzz or custom scripts.

7. Report and Patch validation issues before merging driver

updates.

Risk Type Example Threat Mitigation Tool/Method

Memory corruption Buffer overflow in ioctl KASan + Syzkaller

Unsupported IOCTL codes
Unhandled ioctl leads to
crash

IOCTLbf

Hardware edge cases Rare USB packet structure USBFuzz emulation

Deep driver paths
Complex init logic using
MMIO/PCI

DEVFUZZ symbolic execution
+ fuzzing

Stateful behavior
Module parameters set at
runtime

SyzParam parameter
coverage

Slow fuzz cycles Long init times for each case
Agamotto checkpoint
technique

4 Driver Fuzzing 101: Modern Tools to Catch Bugs Before Hackers Do

11

Common Risks and How Fuzz Tools Mitigate Them
Driver bugs can lead to memory corruption, denial-of-service, or even privilege escalation. Fuzzing tools mitigate

these risks by continuously stress-testing the code under edge conditions.

To Conclude
Driver fuzzing is a much-needed defense layer. Tools like Syzkaller, IOCTLbf, difuze, DEVFUZZ, USBFuzz, Agamotto, and

SyzParam allow teams to find kernel-level bugs early.

Supporting frameworks such as OneFuzz and sanitizers improve crash finding and triage. Implementing a systematic fuzzing

pipeline helps prevent vulnerabilities from entering production systems.

https://www3.cs.stonybrook.edu/~dongyoon/papers/SP-23-DevFuzz.pdf?utm_source=chatgpt.com

5 Unwinding Kernel Stack Traces in Obfuscated Driver Environments

12

Hypervisor‑based Introspection:

Reversing Memory Assumptions
A single direction seems to be one of the brightest

questionings: The Reversing Machine (TRM), a hypervisor-

based memory introspection system. TRM can rebuild

complete memory maps of the kernel and modules during

execution, track both kernel/user transitions, and rebuild

structures and execution flows within obfuscated

environments.

According to its designers, it reduces by 75 % the manual

reverse‑engineering time of obfuscated kernel modules.

Unlike stack unwinding, this method completely avoids

unwinding because it reconstructs the execution context

based on the raw memory patterns and control-flow

transitions.

Dynamic Profiling of Kernel Events
It basically provides the possibility to use kernel telemetry

and ETW (Event Tracing for Windows) to take runtime call-

stack samples, e.g., even in case of their obfuscation, without

symbols or frame layouts. In their Elastic 8.11 release, Elastic

Security Labs added more support to ETW in the kernel,

where they record in-memory call stacks to find evasive

behavior.

Why is this useful? Although one may obfuscate the

functions, the context of the driver callback and dispatch

routines is usually the same across programs, and it is

possible to cluster and trend patterns within them.

Detecting Invalid Unwinds and Stack
Corruption
When an illegal boundary of the stack pointer is reached

other than via corrupted frames or bad stack pointers (a

frequent condition under a corrupted driver or kernel in

general, or obfuscation in particular), the driver may crash

with bug check UNWIND_ON_INVALID_STACK (0x1AB).

Crash dumping with this bug check flag will indicate where

unwind failed, and show the limits of valid and invalid stack

states.

Classical stack unwinding always breaks when kernel drivers

are heavily obfuscated or use new packing and hiding

mechanisms, as they can. It is not just the lack of symbols:

interrupted unwind metadata, corrupted frame contexts,

non-standard and non-standard trap handlers, and control

flow.

This article takes a closer look at the mechanics and reliable

techniques of recuperating call chains even when regular

unwind formats do not work.

Why Obfuscation Breaks Stack Unwinding?
Kernel‑mode driver obfuscation applications are uncommon,

though existent, particularly in special IP-protection or

rootkit applications. Standard stack tracing using frame

pointers, ORC tables, or DWARF cannot work when code is

packed, that is, generated dynamically, or does not have

typical prologue/epilogue conventions.

The documentation of Microsoft Kernel-mode Hardware-

enforced Stack Protection notes the possibility that drivers

written with control-flow obfuscation are incompatible with

shadow-stack enforcement, making it clear that these kinds

of transformations make traceability impossible.

Frame Pointers, ORC, and When They Stall
Most programs that run on Linux use frame pointers or ORC

unwind tables to unwind. However, the mechanism is less

reliable when obfuscated or compiled away frame pointers.

This can be observed in the very documentation of the

kernel itself, which warns that an architecture cannot accept

unreliable code paths, i.e., where memory operations are out

of control, e.g., trampolines, or foreign code such as eBPF:

what obfuscation does: obscures or eliminates stack-safe

areas.

On the same note, ORC provides assistance when the

module respects compiler-generated unwind metadata.

However, a corrupt packer can discard or corrupt those

tables completely.

https://arxiv.org/abs/2405.00298
https://www.elastic.co/security-labs/doubling-down-etw-callstacks
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/bug-check-0x1ab-unwind-on-invalid-stack
https://learn.microsoft.com/en-us/windows-server/security/kernel-mode-hardware-stack-protection

13

Future Directions
Future research highlights challenges like continuous KASLR

and runtime re-randomization, as demonstrated by projects

like Adelie, which make static mapping and return-address

heuristics increasingly unreliable.

Bottom Line
Unwinding kernel stack traces in obfuscated drivers

demands more than static debugging. Traditional methods

fall short with KASLR, shadow stacks, and driver isolation.

Techniques like memory introspection, ETW tracing, and

return address heuristics are now essential. It is becoming

the rule and not the exception. Adaptive, context-aware

unwinding is not a choice; it is a necessity for researchers

and security engineers to be able to keep up with the

constantly changing protections and ever more obscured

execution paths in the kernel.

Techniques to Reassemble Traces in Practice

1. Pre‑warm trace points in safe code paths
Before the obfuscated part, lightweight instrumentation is

inserted at known points of kernel entry or kernel exit. These

serve as anchor frames- even if you lose some deeper in, you

can use the anchors and assemble call slices outward.

2. Use hypervisor memory snapshotting
The hypervisor pauses or suspends the VM, captures physical

memory pages, particularly those of the driver module, and

exposes them through LibVMI’s shared memory interface to

the introspection application.

That application then analyzes instruction boundaries,

cross‑mode transitions, and call addresses. By applying

memory-access and control-flow heuristics in conjunction

with driver base address info, it reconstructs an approximate

call sequence from obfuscated modules, even without

conventional unwind metadata.

3. Heuristic-based return address hunting
Return addresses will generally push onto the stack in a

predictable format, even without the frame pointers. You

may also scan stack memory to seek likely return addresses

within the driver's virtual address window and utilize these

as unwind hints. Merge with control-flow graphs that are

statically extracted from unpacked code.

4. ETW / ETW‑like callback capture
In Windows, call register kernel notification callbacks (e.g.,

PsSetCreateProcessNotifyRoutineEx, ObRegisterCallbacks),

which EDR/AV drivers usually use to record entry/exit of

some important routines. They all represent practical

landmarks that assist in confining and checking the restored

stack frames.

https://arxiv.org/abs/2201.08378
https://www.cobaltstrike.com/blog/behind-the-mask-spoofing-call-stacks-dynamically-with-timers
https://secret.club/2025/06/02/hypervisors-for-memory-introspection-and-reverse-engineering.html
https://www.elastic.co/blog/universal-profiling-frame-pointers-symbols-ebpf
https://labs.withsecure.com/publications/spoofing-call-stacks-to-confuse-edrs

6 “Secure by Design” Policy Gathers Momentum in the UK

14

Parliament and Watchdogs Back the Push
The Public Accounts Committee has called for stronger

cyber resilience in the public sector. In its latest report, it said

too many departments rely on outdated defences and patch

fixes. The committee backed Secure by Design as a long-

term strategy to improve system safety.

The National Audit Office has raised similar concerns. It

found that legacy IT and fragmented oversight make

systems more vulnerable. Both groups see the new policy as

a necessary shift.

New Laws Add Pressure
Secure by Design fits into a broader set of legal reforms. The

Cyber Security and Resilience Bill, introduced in 2024, is now

moving through Parliament. It will bring new reporting rules

and stronger oversight of cyber incidents.

The Online Safety Act, which takes full effect on 25 July 2025,

targets digital platforms. It forces companies to build user

protections into their systems at the design stage. Failure to

comply can lead to enforcement action.

Implementation Support and Tools
The Central Digital and Data Office (CDDO) has published

step-by-step support for departments. It encourages teams

to form delivery groups with both technical and policy staff.

A readiness checklist and transition planning guide are

available.

Weekly support calls are open to teams across government.

These sessions help departments apply Secure by Design in

procurement, cloud deployments, and agile software

projects.

Barriers Slow Down Rollout
Some departments are struggling to keep pace. Reports

show that security is still treated as an afterthought in many

public services. Many teams lack the technical capacity to

design secure systems from the ground up.

The Ministry of Defence has raised other problems. Export

controls make it hard to share technical designs with

suppliers. Some systems also depend on old software that

cannot easily be rebuilt.

The UK government is now requiring all central departments

and arm’s length bodies to adopt the Secure by Design

policy. Introduced in May 2025, this move sets a new

baseline for how digital systems must be built across the

public sector.

The policy applies to system delivery teams, digital leaders,

developers, and commercial officers. It demands early

security planning, continuous risk assessment, and full

compliance with the National Cyber Security Centre’s Cyber

Assessment Framework (CAF).

Defence Took the First Step
The Ministry of Defence had already adopted Secure by

Design before the rest of government followed. It published

a "problem book" describing technical debt, legacy

constraints, and supplier challenges. The Defence Digital

team then formalised seven Secure by Design principles.

These include clearly defining the system context, managing

risk across the lifecycle, and creating audit trails that can be

tested by third parties. The ministry expects defence

suppliers to build these into their delivery models.

Code of Practice for Software Vendors

In March 2025, the UK government released a Software

Security Code of Practice. It lays out 14 principles that

software vendors must follow when providing systems to the

public sector.

The principles cover:

Secure development environments

Testing for known vulnerabilities

Managing third-party dependencies

Incident response planning

The code aims to bring vendor standards in line with Secure

by Design expectations.

https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement
https://www.gov.uk/government/collections/online-safety-act
https://www.gov.uk/government/organisations/central-digital-and-data-office
https://www.ncsc.gov.uk/collection/cyber-assessment-framework/introduction-to-caf
https://www.ncsc.gov.uk/collection/cyber-assessment-framework/introduction-to-caf
https://www.gov.uk/government/publications/software-security-code-of-practice/software-security-code-of-practice
https://www.gov.uk/government/publications/software-security-code-of-practice/software-security-code-of-practice

6 “Secure by Design” Policy Gathers Momentum in the UK

15

Software Suppliers Face Pressure

Private vendors now face pressure to meet Secure by Design

and code of practice standards. Larger firms are updating

internal workflows and hiring security-focused engineers.

Smaller vendors face resource gaps.

Some suppliers say they need more clarity from government

buyers. Others warn that the cost of meeting new standards

could put pressure on pricing and delivery timelines.

Security Now Starts with Design
Secure by Design has become a formal part of how the UK

government expects systems to be built. It no longer treats

security as a last step. Instead, it requires developers and

policy teams to plan for it at the start of every project.

The approach now influences procurement, regulation, and

delivery. Whether in digital services or defence systems,

teams are expected to follow the same rules. Departments

that do not comply may face audits or intervention. Vendors

that fall short may be excluded from future contracts.

The rules are now active. The deadlines are near. The priority

is clear.

